精英家教网 > 高中数学 > 题目详情

设数列{an}的前n项和为Sn,且,n=1,2,3
(1)求a1,a2
(2)求Sn与Sn﹣1(n≥2)的关系式,并证明数列{}是等差数列;
(3)求S1•S2•S3 S2011•S2012的值.

(1);(2)SnSn﹣1﹣2Sn+1=0;(3)

解析试题分析:(1)直接利用的关系式求的值;(2)当时,把代入已知关系式可得与的关系式,再由此关系式,去凑出,可得所求数列是等差数列,进而得通项的表达式,从而得的表达式;(3)由(2)中的表达式易求S1•S2•S3 S2011•S2012的值.
试题解析:(1)解:当n=1时,由已知得,解得
同理,可解得 .                  (4分)
(2)证明:由题设
当n≥2时,an=Sn﹣Sn﹣1,代入上式,得SnSn﹣1﹣2Sn+1=0,
,       (7分)
=﹣1+
∴{}是首项为=﹣2,公差为﹣1的等差数列,        (10分)
=﹣2+(n﹣1)•(﹣1)=﹣n﹣1,∴Sn= .    (12分)
(3)解:S1•S2•S3 S2011•S2012= •=.    (14分)
考点:1、等差数列;2、数列的前n项和与通项的综合应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

若无穷数列满足:①对任意;②存在常数,对任意,则称数列为“数列”.
(Ⅰ)若数列的通项为,证明:数列为“数列”;
(Ⅱ)若数列的各项均为正整数,且数列为“数列”,证明:对任意
(Ⅲ)若数列的各项均为正整数,且数列为“数列”,证明:存在,数列为等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的通项公式为,数列的前项和为,且满足
(1)求的通项公式;
(2)在中是否存在使得中的项,若存在,请写出满足题意的其中一项;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

等差数列{am}的前m项和为Sm,已知S3=,且S1,S2,S4成等比数列,
(1)求数列{am}的通项公式.
(2)若{am}又是等比数列,令bm= ,求数列{bm}的前m项和Tm.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若数列的前项和为,对任意正整数都有,记
(1)求,的值;
(2)求数列的通项公式;
(3)若求证:对任意

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列的各项均为正数,为其前项和,对于任意的,总有成等差数列.
(1)求
(2)求数列的通项公式;
(3)设数列的前项和为,且,求证:对任意正整数,总有

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列的前项和为,且的等差中项,等差数列满足.
(1)求数列的通项公式;
(2)设,数列的前项和为,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

四川省广元市2008年新建住房400万平方米,其中有250万平方米是中低价房,预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米.那么,到哪一年底,
(1)该市历年所建中低价房的累计面积(以2008年为累计的第一年)将首次不少于4 750万平方米?
(2)到2013年底,当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%吗?为什么
(参考数据:1.084≈1.36,1.085≈1.47,1.086≈1.59)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在等比数列中,已知,公比,等差数列满足.
(Ⅰ)求数列的通项公式;
(Ⅱ)记,求数列的前n项和.

查看答案和解析>>

同步练习册答案