分析 变形函数f(x)=$\frac{{a}^{2}}{{x}^{2}}$+$\frac{{b}^{2}}{4-{x}^{2}}$=$\frac{1}{4}$[x2+(4-x2)]$(\frac{{a}^{2}}{{x}^{2}}+\frac{{b}^{2}}{4-{x}^{2}})$=$\frac{1}{4}$$[{a}^{2}+{b}^{2}+\frac{{a}^{2}(4-{x}^{2})}{{x}^{2}}+\frac{{b}^{2}{x}^{2}}{4-{x}^{2}}]$,再利用基本不等式的性质即可得出.
解答 证明:∵x∈(0,2),∴x2,4-x2∈(0,4).又ab<0.
∴函数f(x)=$\frac{{a}^{2}}{{x}^{2}}$+$\frac{{b}^{2}}{4-{x}^{2}}$=$\frac{1}{4}$[x2+(4-x2)]$(\frac{{a}^{2}}{{x}^{2}}+\frac{{b}^{2}}{4-{x}^{2}})$=$\frac{1}{4}$$[{a}^{2}+{b}^{2}+\frac{{a}^{2}(4-{x}^{2})}{{x}^{2}}+\frac{{b}^{2}{x}^{2}}{4-{x}^{2}}]$≥$\frac{1}{4}$$({a}^{2}+{b}^{2}+2\sqrt{{a}^{2}{b}^{2}})$=$\frac{{a}^{2}+{b}^{2}-2ab}{4}$=$(\frac{a-b}{2})^{2}$.
当且仅当a(4-x2)=-bx2时取等号.
∴f(x)≥($\frac{a-b}{2}$)2.
点评 本题考查了基本不等式的性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 0<r<$\sqrt{2}$ | B. | 0<r<$\frac{{\sqrt{11}}}{2}$ | C. | 0<r<$\sqrt{3}$ | D. | 0<r<$\frac{{\sqrt{13}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 12 | B. | 24 | C. | 48 | D. | 120 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com