精英家教网 > 高中数学 > 题目详情
在数列{an}中,an=(2n-3)×(
1
2
n,求数列的前n项和Sn
考点:数列的求和
专题:等差数列与等比数列
分析:利用错位相减求和法求解.
解答: 解:∵an=(2n-3)×(
1
2
n
Sn=(-1)×
1
2
+1×(
1
2
)2+3×(
1
2
)3+…+
(2n-3)×(
1
2
n,①
1
2
Sn
=(-1)×(
1
2
)2+1×(
1
2
)3+3×(
1
2
)4
+…+(2n-3)×(
1
2
n+1,②
①-②,得-
1
2
Sn
=-
1
2
+
1
2
+
1
22
+
1
23
+…+
1
2n-1
-(2n-3)×(
1
2
n+1
=-
1
2
+
1
2
(1-
1
2n-1
)
1-
1
2
-(2n-3)×(
1
2
n+1
=
1
2
-
1
2n-1
-(2n-3)×(
1
2
n+1
∴Sn=(2n+1)×(
1
2
)n
-1.
点评:本题考查数列的前n项和的求法,是中档题,解题时要注意错位相减法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知体积为8,高为4的三棱柱ABC-A1B1C1,CC1⊥平面A1B1C1,点D、E分别在棱AA1和CC1上,且DE⊥B1C1,DA1=3,EC1=2.
(Ⅰ)求证C1A1⊥C1B1
(Ⅱ)求平面BDE与平面ABC所成锐二面角的最小值;
(Ⅲ)若用此三棱柱作为无盖(上底面ABC)盛水容器,盛水时发现在D、E两处有泄露,试问此容器最多能盛水多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,斜三棱柱ABC-A1B1C1的所有棱长均为a,侧面B1C1CB⊥底面ABC,且AC1⊥BC.
(Ⅰ)求证:AC1⊥A1B;
(Ⅱ)求二面角B1-AB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,AB=2,E,F分别是BB1,CD的中点,(如图建立空间直角坐标系)
(1)求证:D1F⊥平面ADE;
(2)求异面直线EF和CB1所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax2+bx+c,0<f(-1)=f(-2)=f(-3)≤3,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

9名数学家,每人至多会3种语言,每3人至少有两人能通话,
(1)证明:至少有3人会同一种语言;
(2)如果把9名改为8名数学家,(1)中结论还成立吗?

查看答案和解析>>

科目:高中数学 来源: 题型:

a
b
=|
a
|•|
b
|•cosλ>0,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{bn}(n∈N*)是递增的等比数列,且b1,b3为方程x2-5x+4=0的两根.
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)若an=log2bn+3,求证:数列{an}是等差数列;
(Ⅲ)若cn=an•bn(n∈N*),求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
x
-x(x≥0)的最大值为
 

查看答案和解析>>

同步练习册答案