精英家教网 > 高中数学 > 题目详情

【题目】已知函数y=f(x)是(﹣1,1)上的偶函数,且在区间(﹣1,0)上是单调递增的,A,B,C是锐角三角形△ABC的三个内角,则下列不等式中一定成立的是(
A.f(sinA)>f(sinB)
B.f(sinA)>f(cosB)
C.f(cosC)>f(sinB)
D.f(sinC)>f(cosB)

【答案】C
【解析】解:对于A,由于不能确定sinA、sinB的大小,
故不能确定f(sinA)与f(sinB)的大小,可得A不正确;
对于B,∵A,B,C是锐角三角形△ABC的三个内角,
∴A+B> ,得A> ﹣B
注意到不等式的两边都是锐角,两边取正弦,
得sinA>sin( ﹣B),即sinA>cosB
∵f(x)定义在(﹣1,1)上的偶函数,且在区间(﹣1,0)上单调递增
∴f(x)在(0,1)上是减函数
由sinA>cosB,可得f(sinA)<f(cosB),故B不正确
对于C,∵A,B,C是锐角三角形△ABC的三个内角,
∴B+C> ,得C> ﹣B
注意到不等式的两边都是锐角,两边取余弦,
得cosC<cos( ﹣B),即cosC<sinB
∵f(x)在(0,1)上是减函数
由cosC<sinB,可得f(cosC)>f(sinB),得C正确;
对于D,由对B的证明可得f(sinC)<f(cosB),故D不正确
故选:C
【考点精析】通过灵活运用奇偶性与单调性的综合,掌握奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,的中点.

(1)证明:平面

(2)若点在棱上,且,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(sinx, ), =(cosx,﹣1).
(1)当 时,求tan(x﹣ )的值;
(2)设函数f(x)=2( + ,当x∈[0, ]时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司一下属企业从事某种高科技产品的生产.该企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了50%.预计以后每年年增长率与第一年的相同.公司要求企业从第一年开始,每年年底上缴资金d万元,并将剩余资金全部投入下一年生产.设第n年年底企业上缴资金后的剩余资金为an万元.
(Ⅰ)用d表示a1 , a2 , 并写出an+1与an的关系式;
(Ⅱ)若公司希望经过m(m≥3)年使企业的剩余资金为4000万元,试确定企业每年上缴资金d的值(用m表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax+ +2﹣2a(a>0)的图象在点(1,f(1))处的切线与直线y=2x+1平行.
(1)求a,b满足的关系式;
(2)若f(x)≥2lnx在[1,+∞)上恒成立,求a的取值范围;
(3)证明:1+ + +…+ (2n+1)+ (n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列中,已知(n∈N*)

(1)求数列的通项公式

(2)(λ为非零常数),问是否存在整数λ使得对任意n∈N*都有若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E的长轴的一个端点是抛物线的焦点,离心率是

1)求椭圆E的方程;

2)过点,斜率为k的动直线与椭圆E相交于AB两点,请问x轴上是否存在点M,使为常数?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知p:x2﹣7x+10<0,q:x2﹣4mx+3m2<0,其中m>0.
(1)若m=4,且p∧q为真,求x的取值范围;
(2)若¬q是¬p的充分不必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目.根据预测,甲、乙项目可能的最大盈利率分别为100%50%,可能的最大亏损分别为30%10%.投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元.问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?

查看答案和解析>>

同步练习册答案