精英家教网 > 高中数学 > 题目详情
如图,F1,F2是双曲线的左、右焦点,过F1的直线l与C的左、右两支分别交于A,B两点.若|AB|:|BF2|:|AF2|=3:4:5,则双曲线的离心率为
A.B.C.2D.
A

试题分析:设|AB|=3,则BF2|=4,|AF2|=5,所以△ABF2中,,,由双曲线的第一定义知2a==,∴,∴=3.∴| =3+3-4=2a,∴a=1.在Rt中,=52,∴c=,∴双曲线的离心率e=
点评:求解圆锥曲线的离心率问题关键是通过定义、条件等找到有关a,b,c的方程,然后求出离心率即可
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,已知点是椭圆的右顶点,若点在椭圆上,且满足.(其中为坐标原点)

(1)求椭圆的方程;
(2)若直线与椭圆交于两点,当时,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知动圆P(圆心为点P)过定点A(1,0),且与直线相切。记动点P的轨迹为C。
(Ⅰ)求轨迹C的方程;
(Ⅱ)设过点P的直线l与曲线C相切,且与直线相交于点Q。试研究:在x轴上是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线的右准线为,右焦点,离心率,求双曲线方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知对称轴为坐标轴的双曲线的渐近线方程为,若双曲线上有一点M(),使,那双曲线的交点(     )。
A.在轴上
B.在轴上
C.当时在轴上
D.当时在轴上

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)
已知一条曲线上的点到定点的距离是到定点距离的二倍,求这条曲线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知焦点在轴上的椭圆过点,且离心率为,为椭圆的左顶点.
(1)求椭圆的标准方程;
(2)已知过点的直线与椭圆交于两点.
① 若直线垂直于轴,求的大小;
② 若直线轴不垂直,是否存在直线使得为等腰三角形?如果存在,求出直线的方程;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆方程为,左、右焦点分别是,若椭圆上的点的距离和等于
(Ⅰ)写出椭圆的方程和焦点坐标;
(Ⅱ)设点是椭圆的动点,求线段中点的轨迹方程;
(Ⅲ)直线过定点,且与椭圆交于不同的两点,若为锐角(为坐标原点),求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在椭圆中,分别是其左右焦点,若,则该椭圆离心率的取值范围是 (     )
A.B.C.D.

查看答案和解析>>

同步练习册答案