精英家教网 > 高中数学 > 题目详情
12.已知函数 f(x)=Asin(ωx+φ)(其中A>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,为了得到g(x)=sin 2x的图象,则只需将f (x)的图象(  )
A.向右平移 $\frac{π}{6}$个长度单位B.向右平移 $\frac{π}{12}$个长度单位
C.向左平移$\frac{π}{6}$个长度单位D.向左平移 $\frac{π}{12}$个长度单位

分析 由函数的最值求出A,由周期求出ω,由五点法作图求出φ的值,可得函数f(x)的解析式,再利用y=Asin(ωx+φ)的图象变换规律,得出结论.

解答 解:由函数f(x)=Asin(ωx+φ)(其中A>0,|φ|<$\frac{π}{2}$)的部分图象可得A=1,
$\frac{T}{4}$=$\frac{1}{4}$•$\frac{2π}{ω}$=$\frac{7π}{12}$-$\frac{π}{3}$,求得ω=2.
再根据五点法作图可得2×$\frac{π}{3}$+φ=π,∴φ=$\frac{π}{3}$,f(x)=sin(2x+$\frac{π}{3}$).
故把f(x)=sin(2x+$\frac{π}{3}$)的图象向右平移 $\frac{π}{6}$个长度单位,可得y=sin[2(x-$\frac{π}{6}$)+$\frac{π}{3}$]=g(x)的图象,
故选:A.

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,y=Asin(ωx+φ)的图象变换规律,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知实数x,y满足ax<ay(0<a<1),则下列关系式恒成立的是(  )
A.ln(x2+1)>ln(y2+1)B.sinx>sinyC.x3>y3D.$\frac{1}{{{x^2}+1}}>\frac{1}{{{y^2}+1}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知奇函数f(x)的定义域为(2a,a+1),求f(a+$\frac{1}{3}$)的值为(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若等轴双曲线经过点(2,1),则该双曲线的实轴长是(  )
A.2$\sqrt{3}$B.$\sqrt{3}$C.2$\sqrt{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.一个盒子装有六张卡片,上面分别写着如下六个函数:f1(x)=x3,f2(x)=5|x|,f3(x)=2,f4(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$,f5(x)=sin($\frac{π}{2}$+x),f6(x)=xcosx.
(1)从中任意取2张卡片,求至少有一张卡片写着的函数为奇函数的概率;
(2)在(1)的条件下,求两张卡片上写着的函数相加得到新函数为奇函数的概率;
(3)现从盒子逐一抽取卡片,且每次取出后均不放回,若取到一张写有偶后寒素的卡片则停止抽取,否则继续进行,求抽取次数X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某环保部门对甲、乙两类A型品牌车各抽取5辆进行CO2排放量检测,记录如下(单位:g/km).
80110120140150
100120xy160
经测算发现,乙品牌车CO2排放量的平均值为$\overline{{x}_{乙}}$=120g/km.
(Ⅰ)从被检测的5辆甲类品牌车中任取2辆,则至少有一辆CO2排放量超过130(g/km)的概率是多少?
(Ⅱ)若90<x<130,试比较甲、乙两类品牌车CO2排放量的稳定性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.连续抛掷两次骰子得到的点数分别为m和n,记向量$\overrightarrow{a}$=(m,n),向量$\overrightarrow{b}$=(1,-2),则$\overrightarrow{a}$⊥$\overrightarrow{b}$的概率是(  )
A.$\frac{1}{12}$B.$\frac{1}{6}$C.$\frac{7}{36}$D.$\frac{2}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在直角坐标系中,A(1,2),B(4,0),l⊥x轴交于P,交AB于R,求四边形OPRA的面积小于2的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在北纬60°线上,有A、B两地,它们分别在东经20°和140°线上,设地球半径为R,求A、B两地的球面距离.

查看答案和解析>>

同步练习册答案