精英家教网 > 高中数学 > 题目详情
已知F1,F2是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦点,若点F2关于直线y=
b
a
x的对称点M也在双曲线上,则该双曲线的离心率为
 
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:求出过焦点F且垂直渐近线的直线方程,联立渐近线方程,解方程组可得对称中心的点的坐标,代入方程结合a2+b2=c2,解出e即得.
解答: 解:过焦点F且垂直渐近线的直线方程为:y-0=-
a
b
(x-c),
联立渐近线方程y=
b
a
x与y-0=-
a
b
(x-c),
解之可得x=
a2
c
,y=
ab
c

故对称中心的点坐标为(
a2
c
ab
c
),由中点坐标公式可得对称点的坐标为(
2a2
c
-c,
2ab
c
),
将其代入双曲线的方程可得
(2a2-c2)2
a2c2
-
4a2b2
b2c2
=1,结合a2+b2=c2
化简可得c2=5a2,故可得e=
c
a
=
5

故答案为:
5
点评:本题考查双曲线的简单性质,涉及离心率的求解和对称问题,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x3-mx2-x+1,其中m为实数.
(1)当m=1时,求函数f(x)在区间[-1,
4
3
]上的最大值和最小值;
(2)若对一切的实数x,有f′(x)≥|x|-
7
4
恒成立,其中f′(x)为f(x)的导函数,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且Sn=
1-an
2

(1)求数列{an}的通项公式;
(2)求数列{nan}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x+2y=6,求2x+4y的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,已知A(-2,11),B(-4,5),C(6,0),求点A在BC上的投影坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

解不等式
x2-4x+1
 3x2-7x+2
≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,一个底面半径为
3
的圆柱被与其底面所成角为30°的平面所截,其截面是一个椭圆C.
(Ⅰ)求该椭圆C的长轴长;
(Ⅱ)以该椭圆C的中心为原点,长轴所在的直线为x轴,建立平面直角坐标系,求椭圆C的任意两条互相垂直的切线的交点P的轨迹方程;
(Ⅲ)设(Ⅱ)中的两切点分别为A,B,求点P到直线AB的距离的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆C的右焦点为F,右准线为l,离心率为
3
2
,点A在椭圆上,以F为圆心,FA为半径的圆与l的两个公共点是B,D.
(1)若△FBD是边长为2的等边三角形,求圆的方程;
(2)若A,F,B三点在同一条直线m上,且原点到直线m的距离为2,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

若圆锥的侧面积是底面积的3倍,则其母线与底面角的大小为
 
(结果用反三角函数值表示).

查看答案和解析>>

同步练习册答案