精英家教网 > 高中数学 > 题目详情
△ABC中,已知A(-2,11),B(-4,5),C(6,0),求点A在BC上的投影坐标.
考点:直线的一般式方程与直线的垂直关系
专题:直线与圆
分析:求出BC的斜率与方程,求出过A与BC垂直的直线方程,通过求解交点即可.
解答: 解:B(-4,5),C(6,0),
kBC=
5-0
-4-6
=-
1
2

∴BC的方程为:y=-
1
2
(x-6)
,即x+2y-6=0.
过A与BC垂直的直线方程:y-11=2(x+2),即:2x-y+15=0.
x+2y-6=0
2x-y+15=0
解得
x=
3
5
y=
27
5

∴点A在BC上的投影坐标(
3
5
27
5
).
点评:本题考查直线方程的求法,直线与直线的垂直关系的应用,基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对某校高二年级学生中学阶段参加社区服务的次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图,
分组 频数 频率
[5,15) 10 0.25
[15,25) 26 0.65
[25,35) 3 P
[35,45) m 0.025
合计 M 1
(Ⅰ)请写出表中M,m,P及图中a的值;
(Ⅱ)请根据频率分布直方图估计这M名学生参加社区服务的次数的众数与中位数;
(Ⅲ)在所取样本中,从参加社区服务的次数不少于25次的学生中任选2人,求恰有一人参加社区服务次数落在区间[35,45)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲乙两个学校高三年级学生比为11:10,为了了解两个学校全体高三年级学生在省统考的数学成绩情况,采用分层抽样方法从两个学校一共抽取了105名学生的数学成绩,并作出了如下的频数分布统计表,规定考试成绩在[120,150]内为优秀.
甲校:
分组 [70,80) [80,90) [90,100) [100,110)
频数 2 3 10 15
分组 [110,120) [120,130) [130,140) [140,150)
频数 15 x 3 1
乙校:
分组 [70,80) [80,90) [90,100) [100,110)
频数 1 2 9 8
分组 [110,120) [120,130) [130,140) [140,150)
频数 10 10 y 3
(1)计算x,y的值,并根据抽样结果分别估计甲校和乙校的优秀率;
(2)若把频率作为概率,现从乙校学生中任选3人,求优秀学生人数ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

某高校从参加今年自主招生考试的学生中,随机抽取容量为50的学生成绩样本,得频率分布表如下:
组号 分组 频数 频率
第一组 [230,235) 8 0.16
第二组 [235,240) 0.24
第三组 [240,245) 15
第四组 [245,250) 10 0.20
第五组 [250,255) 5 0.10
合计 50 1.00
(l)写出表中①②位置的数据;
(2)为了选拔出更优秀的学生,高校决定在第三组、第四组、第五组中用分层抽样法,抽取6名学生进行第二轮考核,分别求第三、第四、第五各组参加考核的人数;
(3)在(2)的前提下,高校决定在这6名学生中录取2名学生,其中有ξ名第三组的,求ξ的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

国家标准规定:轻型汽车的氮氧化物排放量不得超过80mg/km.根据这个标准,检测单位从某出租车公司运营的A、B两种型号的出租车中分别抽取6辆,对其氮氧化物的排放量进行检测,检测结果记录如下:(单位:mg/km)
A 85 80 85 60 90 80
B 70 85 95 x 75 65
由于表格被污损,数据x看不清,统计员只记得A、B两种出租车的氮氧化物排放量的平均值相等.
(1)求表格中x的值;
(2)从被检测的6辆B种型号的出租车中任取3辆,记事件A:至少有两辆出租车氮氧化物排放量未超过80mg/km,求事件A的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦点,若点F2关于直线y=
b
a
x的对称点M也在双曲线上,则该双曲线的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC是边长为3的等边三角形,点D、E分别是边AB,AC上的点,且满足
AD
DB
=
CE
EA
=
1
2
.将△ADE沿DE折起到△A1DE的位置,并使得平面A1DE⊥平面BCED.
(1)求证:A1D⊥EC;
(2)设P为线段BC上的一点,试求直线PA1与平面A1BD所成角的正切的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别为角A、B、C的对边,且10sin2
B+C
2
-5sin(2014π-A)=12,
π
4
<A<
π
2

(1)求cosA的值;
(2)若a=8,b=5,求向量
BA
BC
方向上的射影.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,设D是图中边长为2的正方形区域,E是函数y=x3的 图象与x轴及x=±1围成的阴影区域.向D中随机投一点,则该点落入E中的概率为
 

查看答案和解析>>

同步练习册答案