精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=3x,对于定义域内任意的x1,x2(x1≠x2),给出如下结论:
①f(x1+x2)=f(x1)•f(x2
②f(x1•x2)=f(x1)+f(x2
③$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0
④f(-x1)+f(-x2)=f(x1)+f(x2
其中正确结论的序号是(  )
A.①③B.①④C.②③D.②④

分析 根据指数的运算法则即可①正确,②错误,④错误;
根据函数f(x)=3x的单调性可以判断③正确.

解答 解:关于函数f(x)=3x,对于定义域内任意的x1,x2(x1≠x2):
①f(x1+x2)=${3}^{{x}_{1}{+x}_{2}}$=${3}^{{x}_{1}}$•${3}^{{x}_{2}}$=f(x1)•f(x2),∴①正确;
②f(x1•x2)=${3}^{{x}_{1}{•x}_{2}}$≠${3}^{{x}_{1}}$+${3}^{{x}_{2}}$=f(x1)+f(x2),∴②错误;
③f(x)=3x是定义域上的增函数,f′(x)=k=$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0,∴③正确;
④f(-x1)+f(-x2)=${3}^{{-x}_{1}}$+${3}^{{-x}_{2}}$≠${3}^{{x}_{1}}$+${3}^{{x}_{2}}$=f(x1)+f(x2),∴④错误;
综上,正确结论的序号是①③.
故选:A.

点评 本题考查了指数函数的图象与性质的应用问题,解题时应结合指数的运算性质与函数图象分析结论中式子的几何意义,再进行判断,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.设点A,B的坐标分别是(-5,0),(5,0),直线AM,BM相交于点M,且它们的斜率之积是-$\frac{4}{9}$,点M的轨迹方程为(  )
A.$\frac{{x}^{2}}{25}$+$\frac{9{y}^{2}}{100}$=1(x≠±5)B.$\frac{{x}^{2}}{25}$-$\frac{9{y}^{2}}{100}$=1(x≠±5)
C.$\frac{{y}^{2}}{25}$+$\frac{9{x}^{2}}{100}$=1(y≠±5)D.$\frac{{y}^{2}}{25}$-$\frac{9{x}^{2}}{100}$(y≠±5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若$sinα=\frac{5}{13}$,且α是第二象限角,则$tan({α-\frac{π}{4}})$的值等于(  )
A.$-\frac{7}{17}$B.$\frac{7}{17}$C.$-\frac{17}{7}$D.$\frac{17}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知抛物线C:y2=2px(p>0),O为坐标原点,F为抛物线的焦点,已知点N(2,m)为抛物线C上一点,且|NF|=4.
(1)求抛物线C的方程;
(2)若直线l过点F交抛物线于不同的两点A,B,交y轴于点M,且$\overrightarrow{MA}$=a$\overrightarrow{AF}$,$\overrightarrow{MB}$=b$\overrightarrow{BF}$,(a,b∈R)对任意的直线l,a+b是否为定值?若是,求出a+b的值,否则,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知抛物线x2=4y上的一点P到此抛物线的焦点的距离为2,则点P的纵坐标是(  )
A.0B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知点G是△ABC的重心.
(1)求$\overrightarrow{GA}$+$\overrightarrow{GB}$+$\overrightarrow{GC}$;
(2)若一过G点的直线分别交△ABC两边AB、AC于P、Q两点,且$\overrightarrow{AP}$=m$\overrightarrow{AB}$,$\overrightarrow{AQ}$=n$\overrightarrow{AC}$,求$\frac{1}{m}$+$\frac{1}{n}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)=x2的导数f′(x)=2x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知α为第二象限角,化简cosα$\sqrt{1+ta{n}^{2}α}$+sinα$\sqrt{1+\frac{1}{ta{n}^{2}α}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)的定义域为R.若f(x+1)是奇函数,f(x-1)是偶函数,则(  )
A.f(x-3)是偶函数B.f(x-4)是偶函数C.f(x)=f(x+4)D.f(x+5)是奇函数

查看答案和解析>>

同步练习册答案