精英家教网 > 高中数学 > 题目详情
18.函数f(x)=x2的导数f′(x)=2x.

分析 根据题意,由幂函数的导数计算公式直接计算可得答案.

解答 解:根据题意,函数f(x)=x2
其导数f′(x)=(x2)′=2x;
故答案为:2x.

点评 本题考查导数的计算,掌握导数计算的公式以及运算法则是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.在△ABC中,内角A,B,C的对边分别是a,b,c,且满足bcosC=a,则△ABC的形状是(  )
A.等边三角形B.锐角三角形C.直角三角形D.钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.给出下列命题:
(1)命题p:;菱形的对角线互相垂直平分,命题q:菱形的对角线相等;则p∨q是假命题
(2)命题“若x2-4x+3=0,则x=3”的逆否命题为真命题
(3)“1<x<3”是“x2-4x+3<0”的必要不充分条件
(4)若命题p:?x∈R,x2+4x+5≠0,则?p:$?{x_0}∈R,{x_0}^2+4{x_0}+5=0$.
其中叙述正确的是(4).(填上所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=3x,对于定义域内任意的x1,x2(x1≠x2),给出如下结论:
①f(x1+x2)=f(x1)•f(x2
②f(x1•x2)=f(x1)+f(x2
③$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0
④f(-x1)+f(-x2)=f(x1)+f(x2
其中正确结论的序号是(  )
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图1.已知抛物线E的顶点O在坐标原点,焦点在y轴正半轴上,准线与y轴的交点为T.过点T作圆C:x2+(y-2)2=1的两条切线,两切点分别为D,G,且|DG|=$\frac{4\sqrt{2}}{3}$
(1)求抛物线E的标准方程:
(2)如图2,过抛物线E的焦点F任作两条互相垂直线l1,l2,分别交抛物线E于P,Q两点和M,N两点,A,B分别为线段PQ和MN的中点.求△AOB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知{an}为等差数列,若a1+a5+a9=5π,则cos(a2+a8)的值为(  )
A.-$\frac{1}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x2+alnx(a∈R,x∈[1,e]).
(1)若a=-4时,求函数f(x)的最大值及相应的x的值;
(2)讨论方程f(x)=0的根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.执行如图的程序,若输出的结果是2,则输入的x=0或2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知△ABC中,AB=3,AC=$\sqrt{3}$,点G是△ABC的重心,$\overrightarrow{AG}$•$\overrightarrow{BC}$=-2.

查看答案和解析>>

同步练习册答案