精英家教网 > 高中数学 > 题目详情
7.执行如图的程序,若输出的结果是2,则输入的x=0或2.

分析 本题考查条件语句,先根据算法语句写出分段函数,然后讨论x的正负,根据函数值求出自变量即可.

解答 解:根据条件语句可知程序的功能是计算y=$\left\{\begin{array}{l}{{2}^{x}+1}&{x<1}\\{{x}^{2}-x}&{x≥1}\end{array}\right.$,
当x<1时,2x+1=2,解得:x=0,
当x≥1时,x2-x=2,解得:x=2或-1(舍去),
故答案为:0或2.

点评 本题主要考查了分段函数,以及条件语句,算法语句是新课标新增的内容,在近两年的新课标地区高考都考查到了,这启示我们要给予高度重视,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.若$sinα=\frac{5}{13}$,且α是第二象限角,则$tan({α-\frac{π}{4}})$的值等于(  )
A.$-\frac{7}{17}$B.$\frac{7}{17}$C.$-\frac{17}{7}$D.$\frac{17}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)=x2的导数f′(x)=2x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知α为第二象限角,化简cosα$\sqrt{1+ta{n}^{2}α}$+sinα$\sqrt{1+\frac{1}{ta{n}^{2}α}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知a=0.85.2,b=0.85.5,c=5.20.1,则这三个数的大小关系为(  )
A.b<a<cB.a<b<cC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.中华龙鸟是生存于距今约1.4亿年的早白垩世现已灭绝的动物,在一次考古活动中,考古学家发现了中华龙鸟的化石标本共5个,考古学家检查了这5个标本股骨和肱骨的长度,得到如下表的数据:
股骨长度x/cm3856596473
肱骨长度y/cm4163707284
若由资料可知肱骨长度y与股骨长度x呈线性相关关系.
(1)求y与x的线性回归方程y=$\widehat{b}$x+$\widehat{a}$($\widehat{a}$,$\widehat{b}$精确到0.01);
(2)若某个中华龙鸟的化石只保留有股骨,现测得其长度为37cm,根据(1)的结论推测该中华龙鸟的肱骨长度(精确到1cm).
(参考公式和数据:b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-$\widehat{b}$$\overline{x}$,$\sum_{i=1}^{5}$xiyi=19956,$\sum_{i=1}^{5}$x${\;}_{i}^{2}$=17486)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.抛物线y2=x上的一点P到焦点的距离是2,则点P的坐标($\frac{7}{4}$,±$\frac{\sqrt{7}}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)的定义域为R.若f(x+1)是奇函数,f(x-1)是偶函数,则(  )
A.f(x-3)是偶函数B.f(x-4)是偶函数C.f(x)=f(x+4)D.f(x+5)是奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若角α的终边落在直线x+y=0上,则$\frac{sinα}{|cosα|}$+$\frac{|sinα|}{cosα}$=0.

查看答案和解析>>

同步练习册答案