精英家教网 > 高中数学 > 题目详情
10.在正方体ABCD-A1B1C1D1中,E,F分别是线段C1D1,A1B1上的点且C1E=A1F=$\frac{1}{3}$A1B1,则直线BE与DF所成角的余弦值是$\frac{1}{19}$.

分析 分别以边D1A1,D1C1,D1D所在直线为x,y,z轴,建立空间直角坐标系,可设正方体的边长为1,根据条件可确定B,E,D,F四点的坐标,从而得到向量$\overrightarrow{BE},\overrightarrow{DF}$的坐标,根据向量夹角余弦的坐标公式即可求出$cos<\overrightarrow{BE},\overrightarrow{DF}>$,从而得出异面直线BE,DF所成角的余弦值.

解答 解:如图,
以D1A1,D1C1,D1D三直线分别为x,y,z轴,建立空间直角坐标系,设正方体边长为1,则:
B(1,1,1),E($0,\frac{2}{3},0$),D(0,0,1),F(1,$\frac{1}{3}$,0);
∴$\overrightarrow{BE}=(-1,-\frac{1}{3},-1)$,$\overrightarrow{DF}=(1,\frac{1}{3},-1)$;
∴cos$<\overrightarrow{BE},\overrightarrow{DF}>$=$\frac{\overrightarrow{BE}•\overrightarrow{DF}}{|\overrightarrow{BE}||\overrightarrow{DF}|}=\frac{-\frac{1}{9}}{1+\frac{1}{9}+1}=-\frac{1}{19}$;
∴直线BE与DF所成角的余弦值是$\frac{1}{19}$.
故答案为:$\frac{1}{19}$.

点评 考查通过建立空间直角坐标系,利用空间向量解决异面直线所成角的问题的方法,能求空间点的坐标,以及由点的坐标求向量坐标,向量夹角余弦的坐标公式,弄清两异面直线所成角和这两直线的方向向量的夹角的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.在Rt△ABC中,已知∠C=$\frac{π}{2}$,c=10,请引入一个恰当的变量来表示S,指出定义域,求何时S取最大值.(S表示面积)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知tanα=$\frac{4}{3}$,tan(α-β)=-$\frac{1}{3}$,则tanβ的值为(  )
A.$\frac{1}{3}$B.3C.$\frac{9}{13}$D.$\frac{13}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.一个多面体的直观图及三视图如图所示(其中M,N分别是AF,BC的中点)
(1)求证:MN∥平面CDEF;
(2)求多面体A-CDEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设命题p:函数f(x)=lg(ax2-x+$\frac{1}{16}$a)定义域为R;命题q:不等式3x-9x<a对任意x∈R恒成立.
(1)如果p是真命题,求实数a的取值范围;
(2)如果命题“p或q”为真命题且“p且q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某校在一次趣味运动会的颁奖仪式上,高一、高二、高三各代表队人数分别为120人、120人、n人.为了活跃气氛,大会组委会在颁奖过程中穿插抽奖活动,并用分层抽样的方法从三个代表队中共抽取20人在前排就坐,其中高二代表队有6人.
(1)求n的值;
(2)把在前排就坐的高二代表队6人分别记为a,b,c,d,e,f,现随机从中抽取2人上台抽奖.求a和b至少有一人上台抽奖的概率;
(3)抽奖活动的规则是:代表通过操作按键使电脑自动产生两个[0,1]之间的均匀随机数x,y,并按如上图所示的程序框图执行.若电脑显示“中奖”,则该代表中奖;若电脑显示“谢谢”,则不中奖,求该代表中奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若非零向量f(x)满足|$\overrightarrow{a}$|=$\frac{2\sqrt{2}}{3}$|$\overrightarrow{b}$|,且$(\overrightarrow a-\overrightarrow b)⊥(3\overrightarrow a+2\overrightarrow b)$,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列命题正确的是(  )
A.垂直于同一条直线的两条直线平行B.垂直于同一个平面的两条直线平行
C.平行于同一个平面的两条直线平行D.平行于同一条直线的两个平面平行

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若a,b,c∈R,且a>b,则下列不等式一定成立的是(  )
A.$\frac{1}{a}$<$\frac{1}{b}$B.(a-b)c2≥0C.a2>b2D.ac>bc

查看答案和解析>>

同步练习册答案