精英家教网 > 高中数学 > 题目详情
20.在Rt△ABC中,已知∠C=$\frac{π}{2}$,c=10,请引入一个恰当的变量来表示S,指出定义域,求何时S取最大值.(S表示面积)

分析 引入Rt△ABC中的一条件直角边a为自变量,则a∈(0,10),此时S=$\frac{1}{2}a$$\sqrt{{10}^{2}-{a}^{2}}$,利用基本不等式,可得何时S取最大值.

解答 解:引入Rt△ABC中的一条件直角边a为自变量,
则a∈(0,10),
此时S=$\frac{1}{2}a$$\sqrt{{10}^{2}-{a}^{2}}$=$\frac{1}{2}\sqrt{{a}^{2}•(100-{a}^{2})}$≤$\frac{{a}^{2}+(100-{a}^{2})}{4}$=25,
当切仅当a2=(100-a2),即a=5$\sqrt{2}$时,S取最大.

点评 本题考查的知识点是三角形的面积公式,函数的最大值,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F,过焦点F且斜率为$\sqrt{3}$的直线与双曲线右支有且只有一个交点,则双曲线的离心率的取值范围是(  )
A.[$\sqrt{3}$,+∞)B.(1,$\sqrt{3}$]C.[2,+∞)D.(1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知:在如图1所示的锐角△ABC中,CH⊥AB于点H,点B关于直线CH的对称点为D,AC边上一点E满足∠EDA=∠A,直线DE交直线CH于点F.
(1)求证:BF∥AC;
(2)若AC边的中点为M,求证:DF=2EM;
(3)当AB=BC时(如图2),在未添加辅助线和其他字母的条件下,找出图2中所有与BE相等的线段,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若函数f(x)=|x-a|+|x+1|,方程f(x)=$\sqrt{1-{x}^{2}}$有解时,a的取值范围为(  )
A.[-2,0]B.[-$\sqrt{2},0$]C.[-$\sqrt{5}$,1]D.[1-$\sqrt{5}$,0]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.一个盒子里装有20只果蝇,不小心混入一只苍蝇,现在要开一个小孔把苍蝇放出来,设每只苍蝇从小孔里钻出来的可能性相等,那么苍蝇放出来时,平均放出了蝇子的个数为(  )
A.10B.11C.12D.13

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知∠A、∠B、∠C是三角形ABC三个内角,那么$\frac{1}{2}$[cos(A+B)-cos(A-B)]sin2C的取值范围为(0,$\frac{16}{27}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=|2x-1|+|2x-a|,g(x)=x+3.
(1)当a=2时,求f(x)<g(x)的解集;
(2)设a>-1,当x∈[-$\frac{a}{2}$,$\frac{1}{2}$),f(x)≤g(x),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数y=sin(-2x)的单调递增区间是(  )
A.[2kπ+$\frac{π}{2}$,2kπ+$\frac{3π}{2}$](k∈Z)B.[kπ+$\frac{π}{4}$,kπ+$\frac{3π}{4}$](k∈Z)
C.[2kπ+π,2kπ+2π](k∈Z)D.[kπ-$\frac{π}{4}$,kπ+$\frac{π}{4}$](k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在正方体ABCD-A1B1C1D1中,E,F分别是线段C1D1,A1B1上的点且C1E=A1F=$\frac{1}{3}$A1B1,则直线BE与DF所成角的余弦值是$\frac{1}{19}$.

查看答案和解析>>

同步练习册答案