精英家教网 > 高中数学 > 题目详情

【题目】对于非负整数集合(非空),若对任意,或者,或者,则称个好集合.以下记的元素个数.

1)给出所有的元素均小于的好集合.(给出结论即可)

2)求出所有满足的好集合.(同时说明理由)

3)若好集合满足,求证:中存在元素,使得中所有元素均为的整数倍.

【答案】1.(2;证明见解析.(3)证明见解析.

【解析】

1)根据好集合的定义列举即可得到结果;

2)设,其中,由;由可知,分别讨论两种情况可的结果;

3)记,则,设,由归纳推理可求得,从而得到,从而得到,可知存在元素满足题意.

1

2)设,其中

则由题意:,故,即

考虑,可知:

,则考虑

,则

,但此时,不满足题意;

,此时,满足题意,

,其中为相异正整数.

3)记,则

首先,,设,其中

分别考虑和其他任一元素,由题意可得:也在中,

对于,考虑,其和大于,故其差

特别的,

,且

以此类推:

,此时

中存在元素,使得中所有元素均为的整数倍.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在极坐标系中,曲线的极坐标方程为.以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为为参数).

(1)若,求曲线的直角坐标方程以及直线的极坐标方程;

(2)设点,曲线与直线交于两点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,直线的极坐标方程为.

1)写出曲线的普通方程和直线的直角坐标方程;

2)若直线与曲线相交于两点,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个袋子中有红、黄、蓝、绿四个小球,有放回地从中任取一个小球,将“三次抽取后,红色小球,黄色小球都取到”记为事件M,用随机模拟的方法估计事件M发生的概率.利用电脑随机产生整数0,1,2,3四个随机数,分别代表红、黄、蓝、绿四个小球,以每三个随机数为一组,表示取小球三次的结果,经随机模拟产生了以下18组随机数:

110

321

230

023

123

021

132

220

001

231

130

133

231

031

320

122

103

233

由此可以估计事件M发生的概率为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校要从甲、乙两名同学中选择一人参加该市组织的数学竞赛,已知甲、乙两名同学最近7次模拟竞赛的数学成绩(满分100分)如下:

:79818384859093

乙:75788284909294.

1)完成答题卡中的茎叶图;

2)分别计算甲、乙两名同学最近7次模拟竞赛成绩的平均数与方差,并由此判断该校应选择哪位同学参加该市组织的数学竞赛.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆M过点且与直线相切.

(1)求动圆圆心M的轨迹C的方程;

(2)斜率为的直线l经过点且与曲线C交于AB两点,线段AB的中垂线交x轴于点N,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的右顶点到其一条渐近线的距离等于,抛物线的焦点与双曲线的右焦点重合,则抛物线上的动点到直线距离之和的最小值为( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.

(1) 证明:PB∥平面AEC

(2) 设二面角D-AE-C为60°,AP=1,AD=,求三棱锥E-ACD的体积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长为的正方形中,分别为边上的中点,现将点为轴旋转至点的位置,使得为直二面角.

(1)证明:

(2)求异面直线所成角的余弦值.

查看答案和解析>>

同步练习册答案