精英家教网 > 高中数学 > 题目详情
4.将函数y=sin(ωx+φ)(ω>0,0<φ<$\frac{π}{2}$)的图象向右平移$\frac{π}{6}$个单位后,得到函数y=cos($\frac{π}{2}$-2x)的图象,则函数y=sin(ωx+φ)的对称中心为(  )
A.(-$\frac{5π}{6}$,0)B.($\frac{π}{3}$,0)C.($\frac{π}{6}$,0)D.(-$\frac{π}{3}$,0)

分析 由题意得y=sin(ωx-$\frac{πω}{6}$+φ)=cos($\frac{π}{2}$-2x)=sin2x,可解得函数的解析式为y=sin(2x+$\frac{π}{3}$),从而可求其对称中心.

解答 解:由题意得y=sin(ωx+φ)(ω>0)的图象向右平移$\frac{π}{6}$个单位后,
得到函数y=sin(ωx-$\frac{πω}{6}$+φ)=cos($\frac{π}{2}$-2x)=sin2x,
故可解得:ω=2,φ=$\frac{π}{3}$,
故函数y=sin(ωx+φ)的解析式为y=sin(2x+$\frac{π}{3}$),
由2x+$\frac{π}{3}$=kπ,即x=$\frac{kπ}{2}$-$\frac{π}{6}$,k∈Z,
k=1时,即解得函数的对称中心为($\frac{π}{3}$,0),
故选:B.

点评 本题主要考查了余弦函数的对称性,考查了函数y=Asin(ωx+φ)的图象变换规律,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知{bn}为单调递增的等差数列,b3+b8=26,b5b6=168,设数列{an}满足$2{a_1}+{2^2}{a_2}+{2^3}{a_3}+…+{2^n}{a_n}={2^{b_n}}$
(1)求数列{bn}的通项;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在△OAB中,已知P为线段AB上一点,$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$.
(1)若$\overrightarrow{BP}$=2$\overrightarrow{PA}$,求x,y的值;
(2)若$\overrightarrow{BP}$=3$\overrightarrow{PA}$,|$\overrightarrow{OA}$|=4,|$\overrightarrow{OB}$|=2,且$\overrightarrow{OA}$与$\overrightarrow{OB}$的夹角为60°,求$\overrightarrow{OP}$•$\overrightarrow{AB}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(1)已知θ是第二象限角,试判断tan(sinθ)•cot(cosθ)的符号;
(2)若sin(cosθ)•cos(sinθ)<0,则θ为第几象限角?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知sinα+cosα=$\frac{\sqrt{3}}{3}$,求sinα-cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.构造数组,规则如下:第一组是两个1,即(1,1),第二组是(1,2a,1),第三组是(1,a(1+2a),2a,a(2a+1),1)…,在每一组的相邻两个数组之间插入这两个数的和的a倍得到下一组,其中a∈(0,$\frac{1}{4}$),设第n组有an个数,且这an个数的和为Sn(n∈N*).
(1)求an和Sn
(2)求证:$\frac{{a}_{1}-1}{{S}_{1}}$+$\frac{{a}_{2}-1}{{S}_{2}}$+…+$\frac{{a}_{n}-1}{{S}_{n}}$≥$\frac{n}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如果关于x的不等式ax2-丨x+1丨+2a<0的解集为空集,则实数的取值范围是(  )
A.[$\frac{1+\sqrt{3}}{4}$,+∞)B.[2,+∞)C.[$\frac{\sqrt{3}-1}{4}$,+∞)D.(-∞,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.己知直线2x+y-8=0与直线x-2y+1=0交于点P.
(1)求过点P且平行于直线4x-3y-7=0的直线11的方程;(结果都写成一般方程形式)
(2)求过点P的所有直线中使原点O到此直线的距离最大的直线12的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如果实数x,y满足条件$\left\{\begin{array}{l}{x-y-2≥0}\\{x-2≤0}\\{y+1≥0}\end{array}\right.$,则z=x+3y的最小值为-2.

查看答案和解析>>

同步练习册答案