| A. | [$\frac{17}{8}$,+∞) | B. | (-∞,$\frac{17}{8}$] | C. | (-∞,2] | D. | [2,+∞) |
分析 利用导数研究函数f(x)的最值问题,根据题意对任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),只要f(x)的最小值大于等于g(x)的最小值即可.
解答 解:∵函数f(x)=lnx-$\frac{1}{4}$x$+\frac{3}{4x}$-1,(x>0)
∴f′(x)=$\frac{1}{x}$-$\frac{1}{4}$+$\frac{-3}{4{x}^{2}}$=$\frac{4x-{x}^{2}-3}{4{x}^{2}}$=$-\frac{(x-1)(x-3)}{4{x}^{2}}$,
若f′(x)>0,1<x<3,f(x)为增函数;若f′(x)<0,x>3或0<x<1,f(x)为减函数;
f(x)在x∈(0,2)上有极值,
f(x)在x=1处取极小值也是最小值f(x)min=f(1)=-$\frac{1}{4}$+$\frac{3}{4}$-1=-$\frac{1}{2}$;
∵g(x)=x2-2bx+4=(x-b)2+4-b2,对称轴x=b,x∈[1,2],
当b<1时,g(x)在x=1处取最小值g(x)min=g(1)=1-2b=4=5-2b;
当1<b<2时,g(x)在x=b处取最小值g(x)min=g(b)=4-b2;
当b>2时,g(x)在[1,2]上是减函数,g(x)min=g(2)=4-4b+4=8-4b;
∵对任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),
∴只要f(x)的最小值大于等于g(x)的最小值即可,
当b<1时,$-\frac{1}{2}$≥5-2b,解得b≥$\frac{11}{4}$,故b无解;当b>2时,$-\frac{1}{2}$≥8-4b,解得b≥$\frac{17}{8}$,
综上:b≥$\frac{17}{8}$,
故选:A
点评 本题考查不等式恒成立问题,利用导数求闭区间上函数的最值,根据不等式恒成立转化为最值恒成立是解决本题的关键.综合性较强,运算较大,有一定的难度.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [1,+∞) | B. | (0,1] | C. | (-∞,-$\frac{1}{2}$] | D. | [-$\frac{1}{2}$,1] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 空气污染指数 单位:μg/m3 | 0~50 | 50~100 | 100~150 | 150~200 | 200~300 | 300以上 |
| 空气质量级别 | 一级 | 二级 | 三级 | 四级 | 五级 | 六级 |
| 空气质量状况 | 优 | 良 | 轻度污染 | 中度污染 | 重度污染 | 严重污染 |
| 空气污染指数 (单位:μg/m3) | [0,50] | (50,100] | (100,150] | (150,200] |
| 监测点个数 | 15 | 40 | y | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,0) | B. | [-2,2] | C. | [-∞,2] | D. | [0,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com