精英家教网 > 高中数学 > 题目详情
2.交通指数是指交通拥堵指数或交通运行指数(Traffic Performance Index,即“TPI”),是反应道路畅通或拥堵的概念性数值,交通指数的取值范围为0~10,分为五级:0~2畅通,2~4为基本畅通,4~6轻度畅通,6~8为中度拥堵,8~10为严重拥堵.高峰时段,巴中市交通指挥中心随机选取了市区40个交通路段,依据交通指数数据绘制的频率分布直方图如图所示:
(Ⅰ)  求出图中x的值,并计算这40个路段中为“中度拥堵”的有多少个?
(Ⅱ) 在我市区的40个交通路段中用分层抽样的方法抽取容量为20的样本.从这个样本路段的“基本畅通”和“严重拥堵”路段中随机选出2个路段,求其中只有一个是“严重拥堵”路段的概率.

分析 (Ⅰ)利用所有的频率和为1,频率等于纵坐标乘以组距即可解得x的值,由频率分布直方图可知底×高=频率,频数×40=个数,即可得出结论;
(Ⅱ)考查古典概型,一一列举所有满足条件的基本事件,利用概率公式求得.

解答 (本题满分为12分)
解:( I)由已知有 0.05×3+0.10×2+0.15×1+0.20×1+x×1=1,
所以x=0.30;
∵40×(0.20×1+0.30×1)=20,
∴这40个路段中为“中度拥堵”的有20个.
( II) 由(1)可知:
容量为20的样本中“基本畅通”与“严重拥堵”路段分别为2个,3个记2个“基本畅通”与3个“严重拥堵”的路段分别为A1,A2;B1,B2,B3
从中随机选出2个路段的基本情况为:
(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),
(A2,B2),(A2,B3),(B1,B2),(B1,B3),(B2,B3)共10个,
其中只有一个是“严重拥堵”路段为:
(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),共6个,
所以只有一个是“严重拥堵”路段的概率$P=\frac{6}{10}=\frac{3}{5}$.

点评 本题主要考查了频率分布直方图的应用、分层抽样和古典概型的概率的求法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.在数列-1,0,$\frac{1}{9}$,$\frac{1}{8}$,…,$\frac{n-2}{{n}^{2}}$,…中,0.08是它的(  )
A.第100项B.第12项C.第10项D.第8项

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.数列{an}的通项公式为an=(-1)n-1•(4n-3),则它的前15项之和S15等于(  )
A.29B.-29C.30D.-30

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知等比数列{an}的公比为-$\frac{1}{2}$,则$\frac{{a}_{1}+{a}_{3}+{a}_{5}}{{a}_{2}+{a}_{4}+{a}_{6}}$的值是-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知正数a1,a2,a3成等差数列,且其和为12;又a2,a3,a4成等比数列,其和为19,那么a4=(  )
A.12B.16C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=$\frac{1}{3}$x3-(1+$\frac{b}{2}$)x2+2bx在区间(-3,1)上是减函数,则实数b的取值范围是(  )
A.(-∞,-3]B.(-∞,1]C.[1,2]D.[-3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知f(x)=x2-3,g(x)=mex,若方程f(x)=g(x)有三个不同的实根,则m的取值范围是(  )
A.$(0,\frac{6}{e^3})$B.$(-3,\frac{6}{e^3})$C.$(-2e,\frac{6}{e^3})$D.(0,2e)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)是定义在(-∞,0)∪(0,+∞)上的奇函数,在区间(-∞,0)单调递增且f(-1)=0.若实数a满足$f({log_2}a)-f({log_{\frac{1}{2}}}a)≤2f(1)$,则实数a的取值范围是(  )
A.[1,2]B.$(-∞,\frac{1}{2}]∪(1,2]$C.(0,2]D.$(0,\frac{1}{2}]∪(1,2]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=lnx-$\frac{1}{4}$x+$\frac{3}{4x}$-1,g(x)=x2-2bx+4,若对任意的x1∈(0,2)存在x2∈[1,2],使f(x1)≥g(x2),则实数b的取值范围是(  )
A.[$\frac{17}{8}$,+∞)B.(-∞,$\frac{17}{8}$]C.(-∞,2]D.[2,+∞)

查看答案和解析>>

同步练习册答案