·ÖÎö £¨1£©Á¬½ÓAC£¬ÍƵ¼³öAC¡ÍBC£¬BC¡ÍCD1£¬´Ó¶øBC¡ÍÃæACD1£¬ÓÉ´ËÄÜÖ¤Ã÷BC¡ÍAD1£®
£¨2£©ÒÔCΪԵ㣬CAΪxÖᣬCBΪyÖᣬCD1ΪzÖᣬ½¨Á¢¿Õ¼äÖ±½Ç×ø±êϵ£¬ÀûÓÃÏòÁ¿·¨ÄÜÇó³öµ±$\frac{CN}{AC}$=$\frac{1}{2}$ʱ£¬Ê¹µÃD1NÓëÆ½ÃæC1D1MËù³É½ÇµÄÕýÏÒֵΪ$\frac{1}{5}$£®
½â´ð
Ö¤Ã÷£º£¨1£©Á¬½ÓAC£¬ÔÚ¡÷ABCÖУ¬AB=2£¬AC=$\sqrt{3}$£¬BC=1£¬
¡ßBC2+AC2=AB2£¬¡àAC¡ÍBC£¬
ÓÖ¡ßCD1¡ÍÃæABCD£¬BC?ÃæABCD£¬¡àBC¡ÍCD1£¬
ÓÖAC¡ÉCD1=C£¬AC?ÃæACD1£¬CD1?ÃæACD1£¬
¡àBC¡ÍÃæACD1£¬
¡ßAD1?ÃæACD1£¬¡àBC¡ÍAD1£®
½â£º£¨2£©µ±$\frac{CN}{AC}$=$\frac{1}{2}$ʱ£¬Ê¹µÃD1NÓëÆ½ÃæC1D1MËù³É½ÇµÄÕýÏÒֵΪ$\frac{1}{5}$£®
Ö¤Ã÷ÈçÏ£º
ÒÔCΪԵ㣬CAΪxÖᣬCBΪyÖᣬCD1ΪzÖᣬ½¨Á¢¿Õ¼äÖ±½Ç×ø±êϵ£®
C£¨0£¬0£¬0£©£¬A£¨$\sqrt{3}£¬0£¬0$£©£¬B£¨0£¬1£¬0£©£¬M£¨$\frac{\sqrt{3}}{2}£¬-\frac{1}{2}£¬0$£©£¬D1£¨0£¬0£¬$\sqrt{3}$£©£¬
ÓÉ$\overrightarrow{C{C}_{1}}$=$\overrightarrow{D{D}_{1}}$£¬µÃC1£¨-$\frac{\sqrt{3}}{2}$£¬$\frac{1}{2}$£¬$\sqrt{3}$£©£¬
ÉèN£¨a£¬0£¬0£©£¬£¨0£¼a£¼$\sqrt{3}$£©£¬
ÉèÃæµÄ·¨ÏòÁ¿$\overrightarrow{m}$=£¨x£¬y£¬z£©£¬
Ôò$\left\{\begin{array}{l}{\overrightarrow{{C}_{1}{D}_{1}}•\overrightarrow{m}=0}\\{\overrightarrow{{C}_{1}M}=0}\end{array}\right.$£¬¼´$\left\{\begin{array}{l}{y=\sqrt{3}x}\\{z=x}\end{array}\right.$£¬È¡x=1£¬µÃ$\overrightarrow{m}$=£¨1£¬$\sqrt{3}$£¬1£©£¬
$\overrightarrow{{D}_{1}N}$=£¨a£¬0£¬-$\sqrt{3}$£©£¬
ÓÉÌâÒâ|cos£¼$\overrightarrow{{D}_{1}N}$£¬$\overrightarrow{m}$£¾|=$\frac{|a-\sqrt{3}|}{\sqrt{{a}^{2}+3}•\sqrt{5}}$=$\frac{1}{5}$£¬]
½âµÃa=$\frac{\sqrt{3}}{2}$»òa=2$\sqrt{3}$£¨Éᣩ£¬
¡àµ±$\frac{CN}{AC}$=$\frac{1}{2}$ʱ£¬Ê¹µÃD1NÓëÆ½ÃæC1D1MËù³É½ÇµÄÕýÏÒֵΪ$\frac{1}{5}$£®
µãÆÀ ±¾Ì⿼²éÒìÃæÖ±Ïß´¹Ö±µÄÖ¤Ã÷£¬¿¼²éÂú×ãÌõ¼þµÄµãÊÇ·ñ´æÔÚµÄÅжÏÓëÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÏòÁ¿·¨µÄºÏÀíÔËÓã®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | m=2 | B£® | m£¼2 | C£® | m¡Ü2 | D£® | m¡Ý2 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨-¡Þ£¬-3£©¡È£¨-3£¬0] | B£® | £¨-¡Þ£¬-3£©¡È£¨-3£¬1] | C£® | £¨-3£¬0] | D£® | £¨-3£¬1] |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{¦Ð}{6}$ | B£® | $\frac{¦Ð}{3}$ | C£® | $\frac{2¦Ð}{3}$ | D£® | $\frac{5¦Ð}{6}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ?x¡ÊR£¬x2+5x¡Ý6 | B£® | ?x¡ÊR£¬x2+5x=6 | C£® | ?x0¡ÊR£¬x02+5x0¡Ý6 | D£® | ?x¡ÊR£¬x02+5x0£¼6 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1 | B£® | 2 | C£® | 3 | D£® | 4 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 3¦Ða2 | B£® | 2¦Ða2 | C£® | $\frac{3¦Ð{a}^{2}}{2}$ | D£® | $\frac{¦Ð{a}^{2}}{3}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com