6£®ÈçͼËùʾ£¬ÔÚËÄÀâÖùABCD-A1B1C1D1ÖУ¬µ×ÃæABCDΪµÈÑüÌÝÐΣ¬¡ÏDAB=60¡ã£¬AB=2CD=2£¬ÈôCD1´¹Ö±ÓÚÆ½ÃæABCD£¬ÇÒ$C{D_1}=\sqrt{3}$£¬MÊÇÏß¶ÎABµÄÖе㣮
£¨1£©ÇóÖ¤£ºBC¡ÍAD1£»
£¨2£©ÉèNÊÇÏß¶ÎACÉϵÄÒ»¸ö¶¯µã£¬Îʵ±$\frac{CN}{AC}$µÄֵΪ¶àÉÙʱ£¬¿ÉʹµÃD1NÓëÆ½ÃæC1D1MËù³É½ÇµÄÕýÏÒֵΪ$\frac{1}{5}$£¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£®

·ÖÎö £¨1£©Á¬½ÓAC£¬ÍƵ¼³öAC¡ÍBC£¬BC¡ÍCD1£¬´Ó¶øBC¡ÍÃæACD1£¬ÓÉ´ËÄÜÖ¤Ã÷BC¡ÍAD1£®
£¨2£©ÒÔCΪԭµã£¬CAΪxÖᣬCBΪyÖᣬCD1ΪzÖᣬ½¨Á¢¿Õ¼äÖ±½Ç×ø±êϵ£¬ÀûÓÃÏòÁ¿·¨ÄÜÇó³öµ±$\frac{CN}{AC}$=$\frac{1}{2}$ʱ£¬Ê¹µÃD1NÓëÆ½ÃæC1D1MËù³É½ÇµÄÕýÏÒֵΪ$\frac{1}{5}$£®

½â´ð Ö¤Ã÷£º£¨1£©Á¬½ÓAC£¬ÔÚ¡÷ABCÖУ¬AB=2£¬AC=$\sqrt{3}$£¬BC=1£¬
¡ßBC2+AC2=AB2£¬¡àAC¡ÍBC£¬
ÓÖ¡ßCD1¡ÍÃæABCD£¬BC?ÃæABCD£¬¡àBC¡ÍCD1£¬
ÓÖAC¡ÉCD1=C£¬AC?ÃæACD1£¬CD1?ÃæACD1£¬
¡àBC¡ÍÃæACD1£¬
¡ßAD1?ÃæACD1£¬¡àBC¡ÍAD1£®
½â£º£¨2£©µ±$\frac{CN}{AC}$=$\frac{1}{2}$ʱ£¬Ê¹µÃD1NÓëÆ½ÃæC1D1MËù³É½ÇµÄÕýÏÒֵΪ$\frac{1}{5}$£®
Ö¤Ã÷ÈçÏ£º
ÒÔCΪԭµã£¬CAΪxÖᣬCBΪyÖᣬCD1ΪzÖᣬ½¨Á¢¿Õ¼äÖ±½Ç×ø±êϵ£®
C£¨0£¬0£¬0£©£¬A£¨$\sqrt{3}£¬0£¬0$£©£¬B£¨0£¬1£¬0£©£¬M£¨$\frac{\sqrt{3}}{2}£¬-\frac{1}{2}£¬0$£©£¬D1£¨0£¬0£¬$\sqrt{3}$£©£¬
ÓÉ$\overrightarrow{C{C}_{1}}$=$\overrightarrow{D{D}_{1}}$£¬µÃC1£¨-$\frac{\sqrt{3}}{2}$£¬$\frac{1}{2}$£¬$\sqrt{3}$£©£¬
ÉèN£¨a£¬0£¬0£©£¬£¨0£¼a£¼$\sqrt{3}$£©£¬
ÉèÃæµÄ·¨ÏòÁ¿$\overrightarrow{m}$=£¨x£¬y£¬z£©£¬
Ôò$\left\{\begin{array}{l}{\overrightarrow{{C}_{1}{D}_{1}}•\overrightarrow{m}=0}\\{\overrightarrow{{C}_{1}M}=0}\end{array}\right.$£¬¼´$\left\{\begin{array}{l}{y=\sqrt{3}x}\\{z=x}\end{array}\right.$£¬È¡x=1£¬µÃ$\overrightarrow{m}$=£¨1£¬$\sqrt{3}$£¬1£©£¬
$\overrightarrow{{D}_{1}N}$=£¨a£¬0£¬-$\sqrt{3}$£©£¬
ÓÉÌâÒâ|cos£¼$\overrightarrow{{D}_{1}N}$£¬$\overrightarrow{m}$£¾|=$\frac{|a-\sqrt{3}|}{\sqrt{{a}^{2}+3}•\sqrt{5}}$=$\frac{1}{5}$£¬]
½âµÃa=$\frac{\sqrt{3}}{2}$»òa=2$\sqrt{3}$£¨Éᣩ£¬
¡àµ±$\frac{CN}{AC}$=$\frac{1}{2}$ʱ£¬Ê¹µÃD1NÓëÆ½ÃæC1D1MËù³É½ÇµÄÕýÏÒֵΪ$\frac{1}{5}$£®

µãÆÀ ±¾Ì⿼²éÒìÃæÖ±Ïß´¹Ö±µÄÖ¤Ã÷£¬¿¼²éÂú×ãÌõ¼þµÄµãÊÇ·ñ´æÔÚµÄÅжÏÓëÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÏòÁ¿·¨µÄºÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÒÑÖªD¡¢E¡¢F·Ö±ðÊÇ¡÷ABCµÄ±ßBC¡¢CA¡¢ABÉϵĵ㣬ÇÒ$\frac{BD}{DC}$=$\frac{CE}{EA}$=$\frac{AF}{FB}$=$\frac{1}{2}$£¬ÓÖÉèBEÓëCF½»ÓÚL£¬CFÓëAD½»ÓÚM£¬ADÓëBE½»ÓÚN£¬Ôò$\frac{{S}_{¡÷LMN}}{{S}_{¡÷ABC}}$µÈÓÚ$\frac{1}{7}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®Èôf£¨x£©=x2-2mx+4£¨m¡ÊR£© ÔÚ[2£¬+¡Þ£©µ¥µ÷µÝÔö£¬ÔòmµÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
A£®m=2B£®m£¼2C£®m¡Ü2D£®m¡Ý2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®f£¨x£©=$\sqrt{1-{2^x}}$+$\frac{1}{{\sqrt{x+3}}}$µÄ¶¨ÒåÓòΪ£¨¡¡¡¡£©
A£®£¨-¡Þ£¬-3£©¡È£¨-3£¬0]B£®£¨-¡Þ£¬-3£©¡È£¨-3£¬1]C£®£¨-3£¬0]D£®£¨-3£¬1]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®Ö±Ïß$x-\sqrt{3}y+2=0$µÄÇãб½ÇÊÇ£¨¡¡¡¡£©
A£®$\frac{¦Ð}{6}$B£®$\frac{¦Ð}{3}$C£®$\frac{2¦Ð}{3}$D£®$\frac{5¦Ð}{6}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®Éè¡÷ABCµÄÈý¸öÄÚ½ÇA¡¢B¡¢CµÄ¶Ô±ß·Ö±ðΪa¡¢b¡¢c£¬ÇÒcos£¨B-C£©+cosA=$\frac{3}{2}$£¬a2=bc£¬Ôò½ÇAµÄ´óСΪ$\frac{¦Ð}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÃüÌâ¡°?x¡ÊR£¬x2+5x£¼6¡±µÄ·ñ¶¨ÊÇ£¨¡¡¡¡£©
A£®?x¡ÊR£¬x2+5x¡Ý6B£®?x¡ÊR£¬x2+5x=6C£®?x0¡ÊR£¬x02+5x0¡Ý6D£®?x¡ÊR£¬x02+5x0£¼6

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÒÑÖª$\overrightarrow{a}$¡¢$\overrightarrow{b}$¡¢$\overrightarrow{c}$¡¢$\overrightarrow{d}$Ϊ·ÇÁãÏòÁ¿£¬ÇÒ$\overrightarrow{a}$+$\overrightarrow{b}$=$\overrightarrow{c}$£¬$\overrightarrow{a}$-$\overrightarrow{b}$=$\overrightarrow{d}$£¬ÔòÏÂÁÐÃüÌâÕýÈ·µÄ¸öÊýΪ£¨¡¡¡¡£©
¢ÙÈô|$\overrightarrow{a}$|=|$\overrightarrow{b}$|£¬Ôò$\overrightarrow{c}$•$\overrightarrow{d}$=0£»¢ÚÈô$\overrightarrow{c}$•$\overrightarrow{d}$=0£¬Ôò|$\overrightarrow{a}$|=|$\overrightarrow{b}$|£»¢ÛÈô|$\overrightarrow{c}$|=|$\overrightarrow{d}$|£¬Ôò$\overrightarrow{a}$•$\overrightarrow{b}$=0£»¢ÜÈô$\overrightarrow{a}$•$\overrightarrow{b}$=0£¬Ôò|$\overrightarrow{c}$|=|$\overrightarrow{d}$|£®
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÕýËÄÃæÌåµÄÀⳤΪa£¬ËüµÄ¶¥µã¶¼ÔÚͬһÇòÃæÉÏ£¬ÔòÕâ¸öÇòµÄ±íÃæ»ýÊÇ£¨¡¡¡¡£©
A£®3¦Ða2B£®2¦Ða2C£®$\frac{3¦Ð{a}^{2}}{2}$D£®$\frac{¦Ð{a}^{2}}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸