精英家教网 > 高中数学 > 题目详情

黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:则第5个图案中有白色地面砖        块.

46

解析试题分析:根据题意,由于黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案,则白色地面砖的块数的规律为6,6+7=13,13+9+3+3=22,23+11=34,34+12=46,故可知答案为46.
考点:归纳猜想
点评:主要是考查了归纳猜想的运用,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

在正整数数列中,由1开始依次按如下规则取它的项:第一次取1,第二次取2个连续偶数2、4;第三次取3个连续奇数5、7、9;第四次取4个连续偶数10、12、14、16;第五次取5个连续奇数17、19、21、23、25.按此规则一直取下去,得到一个子数列1,2,4,5,7,9,10,12,14,16,17,….则在这个子数列中,由1开始的第15个数是       ,第2014个数是__________.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

,计算,推测当时,有_____________.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知正三角形内切圆的半径与它的高的关系是:,把这个结论推广到空间正四面体,则正四面体内切球的半径与正四面体高的关系是     

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知,则在下列的一段推理过程中,错误的推理步骤有           .(填上所有错误步骤的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知数列, 则(1)     ;
(2)在这个数列中,若是第8个值等于1的项,则         .

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

给出下面类比推理命题(其中Q为有理数集,R为实数集,C为复数集):
①“若a、b∈R,则a-b=0⇒a=b”类比推出“若a、b∈C,则a-b=0⇒a=b”;
②“若a、b、c、d∈R,则复数a+bi=c+di⇒a=c,b=d”类比推出;“若a、b、c、d∈Q,
则a+b=c+d⇒a=c,b=d”;
③“若a、b∈R,则a-b>0⇒a>b”类比推出“若a、b∈C,则a-b>0⇒a>b”;
④“若x∈R,则|x|<1⇒-1<x<1”类比推出“若z∈C,则|z|<1⇒-1<z<1”.
其中类比结论正确的命题序号为________(把你认为正确的命题序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

古希腊著名的毕达哥拉斯学派把1、3、6、10 这样的数称为“三角形数”,而把1、4、9、16 这样的数称为“正方形数”.如图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和,下列等式中,符合这一规律的表达式是    
①13=3+10; ②25=9+16   ③36=15+21;  ④49=18+31;⑤64=28+36

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

在平面几何里,有勾股定理:“设的两边AB、AC互相垂直,则。”拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面积与底面积间的关系,可以得到的正确结论是:“设三棱锥A-BCD的三个侧面ABC、ACD、ADB两两互相垂直,则                     

查看答案和解析>>

同步练习册答案