精英家教网 > 高中数学 > 题目详情
9.方程log2x+x=2的解所在的区间为(  )
A.(0.5,1)B.(1,1.5)C.(1.5,2)D.(2,2.5)

分析 判断f(x)=log2x+x-2,在(0,+∞)上单调递增.根据函数的零点存在性定理得出:f(1)•f(1.5)<0,可得出f(x)的零点在(1,1.5)区间 内,即可得出答案.

解答 解:设f(x)=log2x+x-2,在(0,+∞)上单调递增.
∵f(1)
=0+1-2=-1<0,
f(1.5)=log21.5-0.5=log21.5-log2$\sqrt{2}$>0
∴根据函数的零点存在性定理得出:f(x)的零点在(1,1.5)区间 内
∴方程log2x+x=2的解所在的区间为(1,1.5)
故选:B.

点评 本题考查了函数的单调性,函数零点的判断,方程解所在的区间,属于中档题,但是难度不大,常规题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知数列{an}满足a1=$\frac{1}{2}$,an+1=$\left\{\begin{array}{l}{2{a}_{n}+2n-2,n为奇数}\\{-{a}_{n}-n,n为偶数}\end{array}\right.$数列{an}的前n项和为Sn,bn=a2n,其中n∈N*
(Ⅰ)试求a2,a3的值并证明数列{bn}为等比数列;
(Ⅱ)设cn=bn+a2n+1求数列$\left\{{\frac{1}{{{c_n}{c_{n+1}}}}}\right\}$的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.把5名师范大学的毕业生分配到A、B、C三所学校,每所学校至少一人.其中学数学的两人,学语文的两人,学英语的一人,若A校不招收同一学科的毕业生,则不同的分配方法共有(  )
A.148种B.132种C.126种D.84种

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知满足条件$\left\{\begin{array}{l}x≥0\\ x+y≤2\\ y≥kx(k>0)\end{array}\right.$的动点(x,y)所在的区域D为一直角三角形区域,则区域D的面积为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=sin2x+2sinxcosx+3cos2x,(x∈R)则函数f(x)的单调增区间为[kπ-$\frac{3π}{8}$,kπ+$\frac{π}{8}$],k∈z.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.解下列不等式:
(1)x2-5x+6<0;
(2)x2+x-12≥0;
(3)x2-9≤0;
(4)3x2<7x-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.正项等比数列{an}中,a2=4,a4=16,则数列{an}的前9项和等于1022.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图,正三棱锥的主视图由等腰直角三角形ABC及斜边AB上的高组成,如果AB=2$\sqrt{3}$,那么这个正三棱锥的体积是(  )
A.$3\sqrt{3}$B.$\sqrt{3}$C.9D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在△ABC中,角A,B,C所对的边分别为a,b,c,已知a(sinA-sinB)=csinC-bsinB,且2a=c,则sinA=$\frac{\sqrt{3}}{4}$..

查看答案和解析>>

同步练习册答案