精英家教网 > 高中数学 > 题目详情
△ABC中,角A,B,C的对边分别为a,b,c,且acosC,-bcosB,ccosA成等差数列.
(I)求角B的大小;
(Ⅱ)若b=2
7
S△ABC=2
3
,求a,c的长.
(I)∵acosC,-bcosB,ccosA成等差数列,
∴-2bcosB=acosC+ccosA,
利用正弦定理化简得:-2sinBcosB=sinAcosC+sinCcosA=sin(A+C),
又sin(A+C)=sin(π-B)=sinB,
∴-2sinBcosB=sinB,
又B为三角形的内角,∴sinB≠0,
∴cosB=-
1
2

则B=
3

(Ⅱ)∵B=
3
,∴sinB=
3
2

又S△ABC
1
2
acsinB=2
3

∴ac=8①,
又b=2
7
,cosB=-
1
2

∴由余弦定理得:cosB=
a2+c2-b2
2ac
=
a2+c2-28
16
=-
1
2

可得:a2+c2=20,
∴(a+c)2=a2+c2+2ac=20+16=36,
∴a+c=6②,
联立①②解得:a=2,c=4或a=4,c=2,
则a=2,c=4或a=4,c=2.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•丰台区一模)在△ABC中,角A,B,C所对的边分别为a,b,c,且asinB-bcosC=ccosB.
(Ⅰ)判断△ABC的形状;
(Ⅱ)若f(x)=
1
2
cos2x-
2
3
cosx+
1
2
,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•德州一模)已知函数f(x)=
3
sinxcosx-cos2x+
1
2
(x∈R)

(I)求函数f(x)的最小正周期及在区间[0,
12
]
上的值域;
(Ⅱ)在△ABC中,角A、B、C所对的边分别是a、b、c,又f(
A
2
+
π
3
)=
4
5
,b=2
,面积S△ABC=3,求边长a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•卢湾区一模)在△ABC中,角A,B,C的对边分别为a,b,c,且a=2bcosC,b+c=3a.求sinA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•石景山区一模)在△ABC中,角A,B,C所对应的边分别为a,b,c,且(2a-c)cosB=bcosC.
(Ⅰ)求角B的大小;
(Ⅱ)若A=
π4
,a=2
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角△ABC中,角A、B、C所对的边长分别为a、b、c,向量
m
=(1,cosB),
n
=(sinB,-
3
)
,且
m
n

(1)求角B的大小;
(2)若△ABC面积为
3
3
2
,3ac=25-b2,求a,c的值.

查看答案和解析>>

同步练习册答案