精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=x2-6x+8,x∈[1,a],并且f(x)的最大值为f(a),那么实数a的取值范围是[5,+∞).

分析 由题意可知函数的对称轴x=3,结合二次函数的对称性可知,要使得函数f(x)在(1,a]函数f(x)的最大值为f(a)可求a的范围

解答 解:∵f(x)=x2-6x+8的对称轴x=3
∵f(x)=x2-6x+8,x∈[1,a],并且函数f(x)的最大值为f(a)
∵f(1)=f(5)
∴a≥5
故答案为[5,+∞)

点评 本题主要考查了二次函数的在闭区间上的最值求解,解题的关键是二次函数的对称性的应用

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50m/min.在甲出发2min 后,乙从A乘缆车到B,在B处停留1min后,再从B匀速步行到C.假设缆车匀速直线运行的速度为130m/min,山路AC长为1260m,经测量,cos A=$\frac{12}{13}$,cos C=$\frac{3}{5}$.
(Ⅰ)求索道AB的长;
(Ⅱ)问:乙出发多少分钟后,乙在缆车上与甲的距离最短?
(Ⅲ)为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.一个几何体的三视图如图所示,那么这个几何体的体积是(  )
A.4B.6C.8D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.与曲线$\frac{{x}^{2}}{24}$+$\frac{{y}^{2}}{49}$=1共焦点,且与曲线$\frac{{y}^{2}}{36}$-$\frac{{x}^{2}}{64}$=1共渐近线的双曲线方程为(  )
A.$\frac{{y}^{2}}{16}$-$\frac{{x}^{2}}{9}$=1B.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1C.$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{16}$=1D.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列函数中,最小值是4的函数是(  )
A.y=x+$\frac{4}{x}$B.y=sinx+$\frac{4}{sinx}$(0<x<π)
C.y=ex+4e-xD.$y={log_3}x+\frac{4}{{{{log}_3}x}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设函数f(x)=Acos(ωx+φ)(A,ω,φ是常数,A>0,ω>0).若f(x)在区间[0,$\frac{2π}{3}$]上具有单调性,且f(-$\frac{π}{3}$)=f(0)=-f($\frac{2π}{3}$),则ω=$\frac{6}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.三棱锥A-BCD中,已知AB=CD=$\sqrt{5}$,AD=BC=$\sqrt{6}$,AC=BD=$\sqrt{7}$,那么该三棱锥外接球的表面积为(  )
A.B.C.D.12π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.三个数log2$\frac{1}{5}$,20.1,2-1的大小关系是(  )
A.${log_2}\frac{1}{5}\;<{2^{0.1}}\;<{2^{-1}}$B.${log_2}\frac{1}{5}\;<{2^{-1}}<{2^{0.1}}$
C.${2^{0.1}}\;<{2^{-1}}<{log_2}\frac{1}{5}$D.${2^{0.1}}\;<{log_2}\frac{1}{5}<{2^{-1}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.sin$\frac{π}{12}$cos$\frac{π}{12}$=$\frac{1}{4}$.

查看答案和解析>>

同步练习册答案