精英家教网 > 高中数学 > 题目详情
9.若复数$\frac{a-3i}{1+i}$ (a∈R,i 为虚数单位)是纯虚数,则实数a的值为3.

分析 利用复数代数形式的乘除运算化简,再由实部为0且虚部不为0求得a值.

解答 解:∵$\frac{a-3i}{1+i}$=$\frac{(a-3i)(1-i)}{(1+i)(1-i)}$=$\frac{(a-3)-(a+3)i}{2}$=$\frac{a-3}{2}-\frac{a+3}{2}i$是纯虚数,
∴$\left\{\begin{array}{l}{\frac{a-3}{2}=0}\\{-\frac{a+3}{2}≠0}\end{array}\right.$,解得:a=3.
故答案为:3.

点评 本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知变量x,y满足约束条件$\left\{\begin{array}{l}{x-y+2≤0}\\{x+y-6≤0}\\{x-1≥0}\end{array}\right.$,则$\frac{y}{x}$的取值范围是(  )
A.[2,5]B.(-∞,2]∪[5,+∞)C.(-∞,3]∪[5,+∞)D.[3,5]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=$\frac{x+2}{x+1}$的值域为{y|y≠1},函数g(x)=$\frac{\sqrt{x}+2}{\sqrt{x}+1}$的值域为(1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合A={x|y=$\sqrt{-{x}^{2}+6x-9}$},B={x|3x=4},则(  )
A.A∪B=AB.(∁RA)∩B=∅
C.若α∈A,则f(x)=xα 为增函数D.若α∈B,3α+3=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)=$\frac{1}{\sqrt{x}-3}$,x∈[4,9)∪(9,16]的值域为(-∞,-1]∪[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设x,y∈R,i为虚数单位,且$\frac{x}{1+i}$+$\frac{y}{1+2i}$=$\frac{5}{1+3i}$,则x+y=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知直线ln:nx+2ny=4n+1(n=1,2,…)与x轴、y轴的交点分别为An、Bn,O为坐标原点,设△OAnBn的面积为Sn(n=1,2,…),则$\lim_{n→∞}{S_n}$=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知f(x)是R上的奇函数且f(x+2)=-$\frac{1}{f(x)}$,当x∈(0,1)时,f(x)=2x,求f(-$\frac{9}{2}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.△ABC的三内角A、B、C所对边的长分别为a,b,c,若S△ABC=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{4}$,则角A的大小为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{3π}{4}$D.$\frac{5π}{6}$

查看答案和解析>>

同步练习册答案