精英家教网 > 高中数学 > 题目详情
3.已知集合S={0,1,2,3,4,5,6},T={x|x2-6x+5≤0},则S∩T=(  )
A.{2,3,4}B.{1,2,3,4,5}C.{2,3}D.T

分析 化简集合T,根据交集的定义写出S∩T即可.

解答 解:集合S={0,1,2,3,4,5,6},
T={x|x2-6x+5≤0}={x|1≤x≤5},
则S∩T={1,2,3,4,5}.
故选:B.

点评 本题考查了集合的化简与运算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.如图,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠BCD=120°,四边形BFED是以BD为直角腰的直角梯形,DE=2BF=2,平面BFED⊥平面ABCD.
(Ⅰ)求证:AD⊥平面BFED;
(Ⅱ)在线段EF上是否存在一点P,使得平面PAB与平面ADE所成的锐二面角的余弦值为$\frac{5\sqrt{7}}{28}$.若存在,求出点P的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知△ABC的内角A、B、C的对边分别为a、b、c,且3bcos A=ccos A+acosC.
(1)求tanA的值;
(2)若a=4$\sqrt{2}$,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知(ax+b)6的展开式中x4项的系数与x5项的系数分别为135与-18,则(ax+b)6展开式所有项系数之和为(  )
A.-1B.1C.32D.64

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图所示,在四棱台ABCD-A1B1C1D1中,AA1⊥底面ABCD,四边形ABCD为菱形,∠BAD=120°,AB=AA1=2A1B1=2.
(Ⅰ)若M为CD中点,求证:AM⊥平面AA1B1B;
(Ⅱ)求直线DD1与平面A1BD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.从正五边形的5个顶点中随机选择3个顶点,则以它们作为顶点的三角形是锐角三角形的概率是(  )
A.$\frac{1}{3}$B.$\frac{2}{5}$C.$\frac{1}{2}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.一个几何体的三视图如图所示,图中矩形均为边长是1的正方形弧线为四分之一圆,则该几何体的体积是$1-\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.数列{an}的前n项和是Sn,且Sn+$\frac{1}{2}$an=1,数列{bn},{cn}满足bn=log3$\frac{{{a}_{n}}^{2}}{4}$,cn=$\frac{1}{{b}_{n}{b}_{n+2}}$.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)数列{cn}的前n项和为Tn,若不等式Tn<m对任意的正整数n恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知平面向量$\overrightarrow{a}$=(3,4),$\overrightarrow{b}$=(x,$\frac{1}{2}$),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则实数x为(  )
A.-$\frac{2}{3}$B.$\frac{2}{3}$C.$\frac{3}{8}$D.-$\frac{3}{8}$

查看答案和解析>>

同步练习册答案