精英家教网 > 高中数学 > 题目详情
18.如图所示,在四棱台ABCD-A1B1C1D1中,AA1⊥底面ABCD,四边形ABCD为菱形,∠BAD=120°,AB=AA1=2A1B1=2.
(Ⅰ)若M为CD中点,求证:AM⊥平面AA1B1B;
(Ⅱ)求直线DD1与平面A1BD所成角的正弦值.

分析 (Ⅰ)推导出AM⊥CD,AM⊥AB,AM⊥AA1,由此能证明AM⊥平面AA1B1B
(Ⅱ)分别以AB,AM,AA1为x轴、y轴、z轴,建立如图所示的空间直角坐标系A-xyz,利用向量法能求出直线DD1与平面A1BD所成角θ的正弦值.

解答 证明:(Ⅰ)∵四边形为菱形,∠BAD=120°,连结AC,
∴△ACD为等边三角形,
又∵M为CD中点,∴AM⊥CD,
由CD∥AB得,∴AM⊥AB,
∵AA1⊥底面ABCD,AM?底面ABCD,∴AM⊥AA1
又∵AB∩AA1=A,∴AM⊥平面AA1B1B
解:(Ⅱ)∵四边形ABCD为菱形,∠BAD=120°,AB=AA1=2A1B1=2,
∴DM=1,$AM=\sqrt{3}$,∠AMD=∠BAM=90°,
又∵AA1⊥底面ABCD,
分别以AB,AM,AA1为x轴、y轴、z轴,建立如图所示的空间直角坐标系A-xyz,
则A1(0,0,2)、B(2,0,0)、$D({-1,\sqrt{3},0})$、${D_1}({-\frac{1}{2},\frac{{\sqrt{3}}}{2},2})$,
∴$\overrightarrow{D{D_1}}=({\frac{1}{2},-\frac{{\sqrt{3}}}{2},2})$,$\overrightarrow{BD}=({-3,\sqrt{3},0})$,$\overrightarrow{{A_1}B}=({2,0,-2})$,
设平面A1BD的一个法向量$\vec n=({x,y,z})$,
则有$\left\{\begin{array}{l}\vec n•\overrightarrow{BD}=0\\ \vec n•\overrightarrow{{A_1}B}=0\end{array}\right.⇒\left\{\begin{array}{l}-3x+\sqrt{3}y=0\\ 2x-2z=0\end{array}\right.⇒y=\sqrt{3}x=\sqrt{3}z$,令x=1,则$\vec n=({1,\sqrt{3},1})$,
∴直线DD1与平面A1BD所成角θ的正弦值:
$sinθ=|{cos<\vec n,\overrightarrow{D{D_1}}>}|=|{\frac{{\vec n•\overrightarrow{D{D_1}}}}{{|{\vec n}|•|{\overrightarrow{D{D_1}}}|}}}|=\frac{1}{5}$.

点评 本题考查线面垂直的证明,考查线面角的正弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知平面非零向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{b}$•($\overrightarrow{a}+\overrightarrow{b}$)=1,且|$\overrightarrow{b}$|=1,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在长方体ABCD-A1B1C1D1中,AB=BC=4,AA1=2,则直线BC1与平面BB1D1D所成角的正弦值为(  )
A.$\frac{{\sqrt{6}}}{3}$B.$\frac{{2\sqrt{5}}}{5}$C.$\frac{{\sqrt{15}}}{5}$D.$\frac{{\sqrt{10}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知复数$z=\frac{2+i}{1-i}$(i为虚数单位),那么z的共轭复数为(  )
A.$\frac{3}{2}+\frac{3}{2}i$B.$\frac{1}{2}-\frac{3}{2}i$C.$\frac{1}{2}+\frac{3}{2}i$D.$\frac{3}{2}-\frac{3}{2}i$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.命题:“?x∈R,x2-ax+1<0”的否定为?x∈R,x2-ax+1≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合S={0,1,2,3,4,5,6},T={x|x2-6x+5≤0},则S∩T=(  )
A.{2,3,4}B.{1,2,3,4,5}C.{2,3}D.T

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)是定义在实数集R上的奇函数,若x>0时,f(x)=x•ex,则不等式f(x)>3x的解集为(  )
A.{x|-ln3<x<ln3}B.{x|x<-ln3,或x>ln3}
C.{x|-ln3<x<0,或x>ln3}D.{x|x<-ln3,或0<x<ln3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)的部分图象如图所示,则f(x)的解析式可以是(  )
A.f(x)=x+sinxB.f(x)=$\frac{cosx}{x}$C.f(x)=x(x-$\frac{π}{2}$)(x-$\frac{3π}{2}$)D.f(x)=xcosx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图所示,在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使得平面ABD⊥平面BCD,构成四面体A-BCD,则在四面体中,下列说法正确的是(  )
A.平面ABD⊥平面ABCB.平面ACD⊥平面BCDC.平面ABC⊥平面BCDD.平面ACD⊥平面ABC

查看答案和解析>>

同步练习册答案