精英家教网 > 高中数学 > 题目详情
13.如图,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠BCD=120°,四边形BFED是以BD为直角腰的直角梯形,DE=2BF=2,平面BFED⊥平面ABCD.
(Ⅰ)求证:AD⊥平面BFED;
(Ⅱ)在线段EF上是否存在一点P,使得平面PAB与平面ADE所成的锐二面角的余弦值为$\frac{5\sqrt{7}}{28}$.若存在,求出点P的位置;若不存在,说明理由.

分析 (Ⅰ)推出AB=2,求解AB2=AD2+BD2,证明BD⊥AD,然后证明AD⊥平面BFED.
(Ⅱ)以D为原点,分别以DA,DE,DE为x轴,y轴,z轴建立如图所示的空间直角坐标系,求出相关点的坐标,求出平面EAD的一个法向量,平面PAB的一个法向量,利用向量的数量积,转化求解即可.

解答 解:(Ⅰ)在梯形ABCD中,

∵AB∥CD,AD=DC=CB=1,∠BCD=120°,
∴故 AB=2,
∴BD2=AB2+AD2-2AB•AD•cos60°=3,
∴AB2=AD2+BD2
∴BD⊥AD,
∵平面BFED⊥平面ABCD,平面BFED∩平面ABCD=BD,
∴AD⊥平面BFED.…(5分)
(Ⅱ)∵AD⊥平面BFED,∴AD⊥DE,
以D为原点,分别以DA,DE,DE为x轴,y轴,z轴建立如图所示的空间直角坐标系,
则D(0,0,0),A(1,0,0),B(0,$\sqrt{3}$,0),P(0,λ,$2-\frac{\sqrt{3}}{3}λ$),
$\overrightarrow{AB}$=(-1,$\sqrt{3}$,0),$\overrightarrow{AP}$=$(0,λ-\sqrt{3},2-\frac{\sqrt{3}}{3}λ)$.
取平面EAD的一个法向量为$\overrightarrow{n}$=(0,1,0),
设平面PAB的一个法向量为$\overrightarrow{m}$=(x,y,z),
由$\overrightarrow{AB}•\overrightarrow{m}$=0,$\overrightarrow{AP}$•$\overrightarrow{m}$=0得:$\left\{\begin{array}{l}{-x+\sqrt{3}y=0}\\{(λ-\sqrt{3})y+(2-\frac{\sqrt{3}}{3}λ)z=0}\end{array}\right.$,取y=1,可得$\overrightarrow{m}$=($\sqrt{3},1,\frac{\sqrt{3}-λ}{2-\frac{\sqrt{3}}{2}λ}$).
∵二面角A-PD-C为锐二面角,平面PAB与平面ADE所成的锐二面角的余弦值为$\frac{5\sqrt{7}}{28}$.
∴cos<$\overrightarrow{m},\overrightarrow{n}>$=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{1}{\sqrt{3+1+(\frac{\sqrt{3}-λ}{2-\frac{\sqrt{3}}{3}λ})^{2}}}$=$\frac{5\sqrt{7}}{28}$,
解得λ=$\frac{1}{3}$,即P为线段EF的3等分点靠近点E的位置.…(12分)

点评 本题考查直线与平面垂直的判定定理的应用,二面角的平面角的求法,考查空间想象能力以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.定义在R上的偶函数f(x)满足:对任意的x1,x2∈[0,+∞)(x1≠x2),有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}<0$.则(  )
A.f(3)<f(-2)<f(1)B.f(1)<f(-2)<f(3)C.f(-2)<f(1)<f(3)D.f(3)<f(1)<f(-2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\sqrt{lo{g}_{2}x}$+$\sqrt{16-{4}^{x-1}}$.
(1)求f(x)的定义域A;
(2)若函数g(x)=x2+ax+b的零点为-1.5,当x∈A时,求函数g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知一个圆锥的正视图和侧视图都是边长为1的正三角形,则它的俯视图的面积是(  )
A.πB.$\frac{π}{2}$C.$\frac{π}{3}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知平面非零向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{b}$•($\overrightarrow{a}+\overrightarrow{b}$)=1,且|$\overrightarrow{b}$|=1,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.一个棱长为6的正四面体纸盒内放一个正方体,若正方体可以在纸盒内任意转动,则正方体棱长的最大值为(  )
A.3B.2C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图所示,某小区内有一矩形花坛,现将这一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求B点在AM上,D点在AN上,且对角线MN过C点,已知AB=3米,AD=2米.
(Ⅰ)设DN=x米,BM=y米,矩形AMPN的面积为z米2,试用x,y表示z;
(Ⅱ)当DN的长度是多少时,矩形花坛AMPN的面积最小?并求出最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.执行如图所示的程序框图,则输出的a值为(  )
A.-3B.$\frac{1}{3}$C.$-\frac{1}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合S={0,1,2,3,4,5,6},T={x|x2-6x+5≤0},则S∩T=(  )
A.{2,3,4}B.{1,2,3,4,5}C.{2,3}D.T

查看答案和解析>>

同步练习册答案