分析 (Ⅰ)推出AB=2,求解AB2=AD2+BD2,证明BD⊥AD,然后证明AD⊥平面BFED.
(Ⅱ)以D为原点,分别以DA,DE,DE为x轴,y轴,z轴建立如图所示的空间直角坐标系,求出相关点的坐标,求出平面EAD的一个法向量,平面PAB的一个法向量,利用向量的数量积,转化求解即可.
解答 解:(Ⅰ)在梯形ABCD中,![]()
∵AB∥CD,AD=DC=CB=1,∠BCD=120°,
∴故 AB=2,
∴BD2=AB2+AD2-2AB•AD•cos60°=3,
∴AB2=AD2+BD2
∴BD⊥AD,
∵平面BFED⊥平面ABCD,平面BFED∩平面ABCD=BD,
∴AD⊥平面BFED.…(5分)
(Ⅱ)∵AD⊥平面BFED,∴AD⊥DE,
以D为原点,分别以DA,DE,DE为x轴,y轴,z轴建立如图所示的空间直角坐标系,
则D(0,0,0),A(1,0,0),B(0,$\sqrt{3}$,0),P(0,λ,$2-\frac{\sqrt{3}}{3}λ$),
$\overrightarrow{AB}$=(-1,$\sqrt{3}$,0),$\overrightarrow{AP}$=$(0,λ-\sqrt{3},2-\frac{\sqrt{3}}{3}λ)$.![]()
取平面EAD的一个法向量为$\overrightarrow{n}$=(0,1,0),
设平面PAB的一个法向量为$\overrightarrow{m}$=(x,y,z),
由$\overrightarrow{AB}•\overrightarrow{m}$=0,$\overrightarrow{AP}$•$\overrightarrow{m}$=0得:$\left\{\begin{array}{l}{-x+\sqrt{3}y=0}\\{(λ-\sqrt{3})y+(2-\frac{\sqrt{3}}{3}λ)z=0}\end{array}\right.$,取y=1,可得$\overrightarrow{m}$=($\sqrt{3},1,\frac{\sqrt{3}-λ}{2-\frac{\sqrt{3}}{2}λ}$).
∵二面角A-PD-C为锐二面角,平面PAB与平面ADE所成的锐二面角的余弦值为$\frac{5\sqrt{7}}{28}$.
∴cos<$\overrightarrow{m},\overrightarrow{n}>$=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{1}{\sqrt{3+1+(\frac{\sqrt{3}-λ}{2-\frac{\sqrt{3}}{3}λ})^{2}}}$=$\frac{5\sqrt{7}}{28}$,
解得λ=$\frac{1}{3}$,即P为线段EF的3等分点靠近点E的位置.…(12分)
点评 本题考查直线与平面垂直的判定定理的应用,二面角的平面角的求法,考查空间想象能力以及计算能力.
科目:高中数学 来源: 题型:选择题
| A. | f(3)<f(-2)<f(1) | B. | f(1)<f(-2)<f(3) | C. | f(-2)<f(1)<f(3) | D. | f(3)<f(1)<f(-2) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | π | B. | $\frac{π}{2}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 2 | C. | $\sqrt{2}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {2,3,4} | B. | {1,2,3,4,5} | C. | {2,3} | D. | T |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com