精英家教网 > 高中数学 > 题目详情
3.定义在R上的偶函数f(x)满足:对任意的x1,x2∈[0,+∞)(x1≠x2),有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}<0$.则(  )
A.f(3)<f(-2)<f(1)B.f(1)<f(-2)<f(3)C.f(-2)<f(1)<f(3)D.f(3)<f(1)<f(-2)

分析 先由奇偶性将问题转化到[0,+∞),再由函数在区间上的单调性比较.

解答 解:∵f(x)是偶函数
∴f(-2)=f(2)
又∵任意的x1,x2∈[0,+∞)(x1≠x2),有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}<0$,
∴f(x)在[0,+∞)上是减函数,
又∵1<2<3
∴f(1)>f(2)=f(-2)>f(3)
故选:A.

点评 本题主要考查用奇偶性转化区间和单调性比较大小,在比较大小中,用单调性的较多,还有的通过中间桥梁来实现的,如通过正负和1来解决.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.大数据时代出现了滴滴打车服务,二胎政策的放开使得家庭中有两个小孩的现象普遍存在,某城市关系要好的A,B,C,D四个家庭各有两个小孩共8人,准备使用滴滴打车软件,分乘甲、乙两辆汽车出去游玩,每车限坐4名(乘同一辆车的4名小孩不考虑位置),其中A户家庭的孪生姐妹需乘同一辆车,则乘坐甲车的4名小孩恰有2名来自于同一个家庭的乘坐方式共有(  )
A.18种B.24种C.36种D.48种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线$y=-\sqrt{3}x$上,则sin2θ=(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$-\frac{1}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知全集U=R,M={x|y=lg(1-$\frac{2}{x}$)},N={x|y=$\sqrt{x-1}$},则N∩(∁UM)=(  )
A.B.[1,2]C.[0,2]D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知F1(-1,0),F2(1,0)是椭圆C的两个焦点,过F2且垂直x轴的直线交C于A,B两点,且|AB|=3,则C的方程为(  )
A.$\frac{x^2}{2}$+y2=1B.$\frac{x^2}{3}$+$\frac{y^2}{2}$=1C.$\frac{x^2}{4}$+$\frac{y^2}{3}$=1D.$\frac{x^2}{5}$+$\frac{y^2}{4}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若集合A={x|x2<4},且A∪B=A,则集合B可能是(  )
A.{1,2}B.{x|x<2}C.{-1,0,1}D.R

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设数列{an}的通项公式an=ncos$\frac{nπ}{3}$,其前n项和为Sn,则S2016=(  )
A.2016B.-2016C.1008D.-1008

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=$\left\{\begin{array}{l}{1-x,x≤0}\\{(\frac{1}{2})^{x},x>0}\end{array}\right.$,若a=f(log3$\frac{1}{2}$),b=f(2${\;}^{-\frac{1}{2}}$),c=f(3${\;}^{\frac{1}{2}}$),则(  )
A.c>b>aB.c>a>bC.a>c>bD.a>b>c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠BCD=120°,四边形BFED是以BD为直角腰的直角梯形,DE=2BF=2,平面BFED⊥平面ABCD.
(Ⅰ)求证:AD⊥平面BFED;
(Ⅱ)在线段EF上是否存在一点P,使得平面PAB与平面ADE所成的锐二面角的余弦值为$\frac{5\sqrt{7}}{28}$.若存在,求出点P的位置;若不存在,说明理由.

查看答案和解析>>

同步练习册答案