| A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $-\frac{1}{2}$ | D. | $-\frac{{\sqrt{3}}}{2}$ |
分析 利用任意角的三角函数的定义求得tanθ的值,再利用同角三角函数的基本关系,二倍角的正弦公式求得sin2θ的值.
解答 解:∵角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线$y=-\sqrt{3}x$上,
∴tanθ=-$\sqrt{3}$
则sin2θ=$\frac{2sinθ•cosθ}{{sin}^{2}θ{+cos}^{2}θ}$=$\frac{2tanθ}{{tan}^{2}θ+1}$=$\frac{-2\sqrt{3}}{3+1}$=-$\frac{\sqrt{3}}{2}$,
故选:D.
点评 本题主要考查任意角的三角函数的定义,同角三角函数的基本关系,二倍角公式的应用,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 15m | B. | 30m | C. | 25m | D. | 50m |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(3)<f(-2)<f(1) | B. | f(1)<f(-2)<f(3) | C. | f(-2)<f(1)<f(3) | D. | f(3)<f(1)<f(-2) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com