分析 (1)利用cos2α+sin2α=1即可化简求值;
(2)把根式内部采用分母有理化,开方后结合角α的范围得答案.
解答 解:(1)sin2αcos2α+cos4α+sin2α=cos2α(cos2α+sin2α)+sin2α=cos2α+sin2α=1;
(2)$\sqrt{\frac{1+sinα}{1-sinα}}$-$\sqrt{\frac{1-sinα}{1+sinα}}$=$\frac{1+sinα}{|cosα|}-\frac{1-sinα}{|cosα|}=\frac{2sinα}{|cosα|}$,
∵α为第二象限角,∴cosα<0.
则$\sqrt{\frac{1+sinα}{1-sinα}}$-$\sqrt{\frac{1-sinα}{1+sinα}}$=-2tanα.
点评 本题主要考查了同角三角函数基本关系式的应用,灵活应用cos2α+sin2α=1是解题的关键,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,1] | B. | (0,1) | C. | [1,2] | D. | [0,1] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $-\frac{1}{2}$ | D. | $-\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{1}{2e}$ | C. | $\frac{1}{e}$ | D. | $\frac{1}{{e}^{2}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ∅ | B. | [1,2] | C. | [0,2] | D. | [2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{x^2}{2}$+y2=1 | B. | $\frac{x^2}{3}$+$\frac{y^2}{2}$=1 | C. | $\frac{x^2}{4}$+$\frac{y^2}{3}$=1 | D. | $\frac{x^2}{5}$+$\frac{y^2}{4}$=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2016 | B. | -2016 | C. | 1008 | D. | -1008 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1.55 | C. | 0.45 | D. | -0.24 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com