精英家教网 > 高中数学 > 题目详情
11.已知全集U=R,M={x|y=lg(1-$\frac{2}{x}$)},N={x|y=$\sqrt{x-1}$},则N∩(∁UM)=(  )
A.B.[1,2]C.[0,2]D.[2,+∞)

分析 求出两个函数的定义域,可得集合M,N,结合集合的交集,并集,补集运算法则,可得答案.

解答 解:由1-$\frac{2}{x}$>0得:x<0,或x>2,
故∁UM=[0,2],
由x-1≥0得:x≥1,
故N=[1,+∞),
∴N∩(∁UM)=[1,2]
故选:B

点评 本题考查的知识点是集合的交集,并集,补集运算,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=|x-a|+|x+5-a|
(1)若不等式f(x)-|x-a|≤2的解集为[-5,-1],求实数a的值;
(2)若?x0∈R,使得f(x0)<4m+m2,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知三棱锥的外接球的表面积为25π,该三棱锥的三视图如图所示,三个视图的外轮廓都是直角三角形,则其侧视图面积的最大值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.若关于x的不等式|3x+2|+|3x-1|-t≥0的解集为R,记实数t的最大值为a.
(1)求a;
(2)若正实数m,n满足4m+5n=a,求$y=\frac{1}{m+2n}+\frac{4}{3m+3n}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.化简下列各式:
(1)sin2αcos2α+cos4α+sin2α;
(2)$\sqrt{\frac{1+sinα}{1-sinα}}$-$\sqrt{\frac{1-sinα}{1+sinα}}$(α为第二象限角).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在长方体ABCD-A1B1C1D1中,B1C和C1D与底面所成的角分别为60°和45°,则异面直线B1C和C1D所成角的余弦值为(  )
A.$\frac{{\sqrt{6}}}{4}$B.$\frac{{\sqrt{6}}}{3}$C.$\frac{{\sqrt{2}}}{6}$D.$\frac{{\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.定义在R上的偶函数f(x)满足:对任意的x1,x2∈[0,+∞)(x1≠x2),有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}<0$.则(  )
A.f(3)<f(-2)<f(1)B.f(1)<f(-2)<f(3)C.f(-2)<f(1)<f(3)D.f(3)<f(1)<f(-2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.当x>2时,不等式x2-ax+9>0恒成立,则实数a的取值范围为(-∞,6).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知一个圆锥的正视图和侧视图都是边长为1的正三角形,则它的俯视图的面积是(  )
A.πB.$\frac{π}{2}$C.$\frac{π}{3}$D.$\frac{π}{4}$

查看答案和解析>>

同步练习册答案