分析 问题转化为a<x+$\frac{9}{x}$在(2,+∞)恒成立,令f(x)=x+$\frac{9}{x}$,(x>2),根据函数的单调性求出f(x)的最小值,从而求出a的范围即可.
解答 解:当x>2时,不等式x2-ax+9>0恒成立,
即a<x+$\frac{9}{x}$在(2,+∞)恒成立,
令f(x)=x+$\frac{9}{x}$,(x>2),则f′(x)=1-$\frac{9}{{x}^{2}}$,
令f′(x)>0,解得:x>3,令f′(x)<0,解得:2<x<3,
故f(x)在(2,3)递减,在(3,+∞)递增,
故f(x)的最小值是f(3)=6,
故a<6,
故答案为:(-∞,6).
点评 本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,是一道中档题.
科目:高中数学 来源: 题型:选择题
| A. | a>b>c | B. | c>a>b | C. | c>b>a | D. | a>c>b |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ∅ | B. | [1,2] | C. | [0,2] | D. | [2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2016 | B. | -2016 | C. | 1008 | D. | -1008 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | c>b>a | B. | c>a>b | C. | a>c>b | D. | a>b>c |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com