精英家教网 > 高中数学 > 题目详情
8.若集合A={x|x2<4},且A∪B=A,则集合B可能是(  )
A.{1,2}B.{x|x<2}C.{-1,0,1}D.R

分析 化简集合A,根据A∪B=A,即可判断集合B.

解答 解:集合A={x|x2<4}={x|-2<x<2}.
∵A∪B=A,
∴B⊆A.
∵{-1,0,1}⊆A,
故选C.

点评 本题主要考查集合的基本运算,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=|4x-a|+|4x+3|,g(x)=|x-1|-|2x|.
(1)解不等式g(x)>-3;
(2)若存在x1∈R,也存在x2∈R,使得f(x1)=g(x2)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.若关于x的不等式|3x+2|+|3x-1|-t≥0的解集为R,记实数t的最大值为a.
(1)求a;
(2)若正实数m,n满足4m+5n=a,求$y=\frac{1}{m+2n}+\frac{4}{3m+3n}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在长方体ABCD-A1B1C1D1中,B1C和C1D与底面所成的角分别为60°和45°,则异面直线B1C和C1D所成角的余弦值为(  )
A.$\frac{{\sqrt{6}}}{4}$B.$\frac{{\sqrt{6}}}{3}$C.$\frac{{\sqrt{2}}}{6}$D.$\frac{{\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.定义在R上的偶函数f(x)满足:对任意的x1,x2∈[0,+∞)(x1≠x2),有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}<0$.则(  )
A.f(3)<f(-2)<f(1)B.f(1)<f(-2)<f(3)C.f(-2)<f(1)<f(3)D.f(3)<f(1)<f(-2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.以F(0,1)为焦点的抛物线的标准方程是(  )
A.x2=4yB.x2=2yC.y2=4xD.y2=2x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.当x>2时,不等式x2-ax+9>0恒成立,则实数a的取值范围为(-∞,6).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设函数f(x)是定义在R上的函数,满足f(x)=f(4-x),且对任意x1,x2∈(0,+∞),都有(x1-x2)[f(x1+2)-f(x2+2)]>0,则满足f(2-x)=f($\frac{3x+11}{x+4}$)的所有x的和为(  )
A.-3B.-5C.-8D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.一个棱长为6的正四面体纸盒内放一个正方体,若正方体可以在纸盒内任意转动,则正方体棱长的最大值为(  )
A.3B.2C.$\sqrt{2}$D.1

查看答案和解析>>

同步练习册答案