分析 (1))问题转化为|x+5-a|≤2,求出x的范围,得到关于a的不等式组,解出即可;
(2)问题转化为4m+m2>f(x)min,即4m+m2>5,解出即可.
解答 解:(1)∵|x+5-a|≤2,∴a-7≤x≤a-3,
∵f(x)-|x-a|≤2的解集为:[-5,-1],
∴$\left\{\begin{array}{l}{a-7=-5}\\{a-3=-1}\end{array}\right.$,∴a=2.
(2)∵f(x)=|x-a|+|x+5-a|≥5,
∵?x0∈R,使得f(x0)<4m+m2成立,
∴4m+m2>f(x)min,即4m+m2>5,解得:m<-5,或m>1,
∴实数m的取值范围是(-∞,-5)∪(1,+∞).
点评 本题考查了解绝对值不等式问题,考查绝对值的意义,是一道中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3-4\sqrt{3}}{10}$ | B. | -$\frac{3-4\sqrt{3}}{10}$ | C. | $\frac{4-3\sqrt{3}}{10}$ | D. | -$\frac{4-3\sqrt{3}}{10}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 18种 | B. | 24种 | C. | 36种 | D. | 48种 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a>b>c | B. | c>a>b | C. | c>b>a | D. | a>c>b |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ∅ | B. | [1,2] | C. | [0,2] | D. | [2,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com