分析 (1)利用等差数列的通项公式与求和公式即可得出.
(2)利用“裂项求和”方法即可得出.
解答 解:(1)设{an}的公差为d,则由题意知$\left\{{\begin{array}{l}{({{a_1}+2d})({{a_1}+7d})=3({{a_1}+10d})}\\{3{a_1}+\frac{3×2}{2}d=9}\end{array}}\right.$…(2分)
解得$\left\{{\begin{array}{l}{d=0}\\{{a_1}=3}\end{array}}\right.$(舍去)或$\left\{{\begin{array}{l}{d=1}\\{{a_1}=2}\end{array}}\right.$,…(4分)
∴an=2+(n-1)×1=n+1…(6分)
(2)∵$\frac{1}{{{a_n}{a_{n+1}}}}=\frac{1}{{({n+1})({n+2})}}=\frac{1}{n+1}-\frac{1}{n+2}$,…(8分)
∴${T_n}=\frac{1}{{{a_1}{a_2}}}+\frac{1}{{{a_2}{a_3}}}+…+\frac{1}{{{a_n}{a_{n-1}}}}$…(9分)
=$({\frac{1}{2}-\frac{1}{3}})+({\frac{1}{3}-\frac{1}{5}})+…+({\frac{1}{n+1}-\frac{1}{n+2}})$.
=$\frac{1}{2}-\frac{1}{n+2}=\frac{n}{{2({n+2})}}$…(12分)
点评 本题考查了“裂项求和方法”、等差数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 4π | B. | 9π | C. | 12π | D. | 16π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分又不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 15m | B. | 30m | C. | 25m | D. | 50m |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com