精英家教网 > 高中数学 > 题目详情
1.设Sn为各项不相等的等差数列an的前n 项和,已知a3a8=3a11,S3=9.
(1)求数列{an}的通项公式;
(2)求数列{$\frac{1}{{{a_n}{a_{n+1}}}}$}的前n 项和Tn

分析 (1)利用等差数列的通项公式与求和公式即可得出.
(2)利用“裂项求和”方法即可得出.

解答 解:(1)设{an}的公差为d,则由题意知$\left\{{\begin{array}{l}{({{a_1}+2d})({{a_1}+7d})=3({{a_1}+10d})}\\{3{a_1}+\frac{3×2}{2}d=9}\end{array}}\right.$…(2分)
解得$\left\{{\begin{array}{l}{d=0}\\{{a_1}=3}\end{array}}\right.$(舍去)或$\left\{{\begin{array}{l}{d=1}\\{{a_1}=2}\end{array}}\right.$,…(4分)
∴an=2+(n-1)×1=n+1…(6分)
(2)∵$\frac{1}{{{a_n}{a_{n+1}}}}=\frac{1}{{({n+1})({n+2})}}=\frac{1}{n+1}-\frac{1}{n+2}$,…(8分)
∴${T_n}=\frac{1}{{{a_1}{a_2}}}+\frac{1}{{{a_2}{a_3}}}+…+\frac{1}{{{a_n}{a_{n-1}}}}$…(9分)
=$({\frac{1}{2}-\frac{1}{3}})+({\frac{1}{3}-\frac{1}{5}})+…+({\frac{1}{n+1}-\frac{1}{n+2}})$.  
=$\frac{1}{2}-\frac{1}{n+2}=\frac{n}{{2({n+2})}}$…(12分)

点评 本题考查了“裂项求和方法”、等差数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知△EAB所在的平面与矩形ABCD所在的平面互相垂直,EA=EB=3,AD=2,∠AEB=60°,则多面体E-ABCD的外接球的表面积为(  )
A.B.C.12πD.16π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知命题p,q是简单命题,则“¬p是假命题”是“p∨q是真命题”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为,点P是椭圆E上的一个动点,△PF1F2的周长为6,且存在点P使得,△PF1F为正三角形.
(1)求椭圆E的方程;
(2)若A,B,C,D是椭圆E上不重合的四个点,AC与BD相交于点F1,且$\overrightarrow{AC}•\overrightarrow{BD}$=0.若AC的斜率为$\sqrt{3}$,求四边形ABCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在如图所示的几何体中,平面ACE⊥平面ABCD,四边形ABCD 为平行四边形,
∠CAD=90°,EF∥BC,EF=$\frac{1}{2}$BC,AC=$\sqrt{2}$,AE=EC=1.
(1)求证:CE⊥AF;
(2)若二面角E-AC-F 的余弦值为$\frac{{\sqrt{3}}}{3}$,求点D 到平面ACF 的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知曲线C 的参数方程为$\left\{\begin{array}{l}x=2+\sqrt{5}cosα\\ y=1+\sqrt{5}sinα\end{array}\right.$(α为参数),以直角坐标系原点O 为极点,x 轴正半轴为极轴建立极坐标系.
(Ⅰ)求曲线C 的极坐标方程;
(Ⅱ)设l1:θ=$\frac{π}{6}$,l2:θ=$\frac{π}{3}$,若l 1、l2与曲线C 相交于异于原点的两点 A、B,求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.六安滨河公园喷泉中央有一个强力喷水柱,为了测量喷水柱喷出的水柱的高度,某人在水柱正西方向的A处测得水柱顶端的仰角为45°,沿A处向南偏东30°前进50米到达点B处,在B处测得水柱顶端的仰角为30°,则水柱的高度是(  )
A.15mB.30mC.25mD.50m

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=|x-a|+|x+5-a|
(1)若不等式f(x)-|x-a|≤2的解集为[-5,-1],求实数a的值;
(2)若?x0∈R,使得f(x0)<4m+m2,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知三棱锥的外接球的表面积为25π,该三棱锥的三视图如图所示,三个视图的外轮廓都是直角三角形,则其侧视图面积的最大值为3.

查看答案和解析>>

同步练习册答案