12£®»³»¯Ä³ÖÐѧ¶Ô¸ßÈýѧÉú½øÐÐÌåÖʲâÊÔ£¬ÒÑÖª¸ßÈýij¸ö°àÓÐѧÉú30ÈË£¬²âÊÔÁ¢¶¨ÌøÔ¶µÄ³É¼¨Óþ¥Ò¶Í¼±íʾÈçͼ£¨µ¥Î»£ºcm£©
ÄÐÉú³É¼¨ÔÚ195cmÒÔÉÏ£¨°üº¬195cm£©¶¨ÒåΪ¡°ºÏ¸ñ¡±£¬³É¼¨ÔÚ195cmÒÔÏ£¨²»°üº¬195cm£©¶¨ÒåΪ¡°²»ºÏ¸ñ¡±£¬Å®Éú³É¼¨ÔÚ185cmÒÔÉÏ£¨°üº¬185cm£©¶¨ÒåΪ¡°ºÏ¸ñ¡±£¬³É¼¨ÔÚ185cmÒÔÏ£¨²»°üº¬185cm£©¶¨ÒåΪ¡°²»ºÏ¸ñ¡±£®
£¨1£©ÇóÅ®ÉúÁ¢¶¨ÌøÔ¶³É¼¨µÄÖÐλÊý£»
£¨2£©ÈôÔÚÄÐÉúÖа´³É¼¨ºÏ¸ñÓë·ñ½øÐзֲã³éÑù£¬³éÈ¡6ÈË£¬Çó³éÈ¡³É¼¨Îª¡°ºÏ¸ñ¡±µÄѧÉúÈËÊý£»
£¨3£©Èô´Ó£¨2£©ÖгéÈ¡µÄ6ÃûѧÉúÖÐÈÎÒâѡȡ4¸öÈ˲μӸ´ÊÔ£¬ÇóÕâ4ÈËÖÐÖÁÉÙ3È˺ϸñµÄ¸ÅÂÊ£®

·ÖÎö £¨1£©Óɾ¥Ò¶Í¼ÄÜÇó³öÅ®ÉúÁ¢¶¨ÌøÔ¶³É¼¨µÄÖÐλÊý£®
£¨2£©ÄÐÉú³É¼¨¡°ºÏ¸ñ¡±µÄÓÐ8ÈË£¬¡°²»ºÏ¸ñ¡±µÄÓÐ4ÈË£¬Ó÷ֲã³éÑùµÄ·½·¨£¬ÄÜÇó³öÆäÖгɼ¨¡°ºÏ¸ñ¡±µÄѧÉúÓ¦³éÈ¡µÄÈËÊý£®
£¨3£©ÓÉ£¨2£©¿ÉÖª6ÈËÖУ¬4È˺ϸñ£¬2È˲»ºÏ¸ñ£¬ÉèºÏ¸ñѧÉúΪ a£¬b£¬c£¬d ²»ºÏ¸ñѧÉúΪe£¬f£¬ÀûÓÃÁоٷ¨ÄÜÇó³öÕâ4ÈËÖÐÖÁÉÙ3È˺ϸñµÄ¸ÅÂÊ£®

½â´ð ½â£º£¨1£©Å®ÉúÁ¢¶¨ÌøÔ¶³É¼¨µÄÖÐλÊýΪ£º
$\frac{185+188}{2}=186.5$£¨cm£©£®
£¨2£©ÄÐÉú³É¼¨¡°ºÏ¸ñ¡±µÄÓÐ8ÈË£¬¡°²»ºÏ¸ñ¡±µÄÓÐ4ÈË£¬
Ó÷ֲã³éÑùµÄ·½·¨£¬ÆäÖгɼ¨¡°ºÏ¸ñ¡±µÄѧÉúÓ¦³éÈ¡6¡Á$\frac{8}{12}=4$£¨ÈË£©¡­£¨8·Ö£©
£¨3£©ÓÉ£¨2£©¿ÉÖª6ÈËÖУ¬4È˺ϸñ£¬2È˲»ºÏ¸ñ
ÉèºÏ¸ñѧÉúΪ  a£¬b£¬c£¬d      ²»ºÏ¸ñѧÉúΪe£¬f£¬
´ÓÕâ6ÈËÖÐÈÎÈ¡4ÈËÓУº
abcd        abce      abcf     abde      abdf
abef        acde      acdf      acef      adef
bcde        bcdf      bcef      bdef      cdef
¹²ÓÐ15¸ö»ù±¾Ê¼þ£¬ÆäÖзûºÏÌõ¼þµÄ»ù±¾Ê¼þ¹²ÓÐ9¸ö£¬
¹ÊÕâ4ÈËÖÐÖÁÉÙ3È˺ϸñµÄ¸ÅÂÊp=$\frac{9}{15}=\frac{3}{5}$£®¡­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éÖÐλÊý¡¢Ñù±¾µ¥ÔªÊý¡¢¸ÅÂʵÄÇ󷨣¬ÊÇ»ù´¡Ì⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒ⾥Ҷͼ¡¢·Ö²ã³éÑù¡¢µÈ¿ÉÄÜʼþ¸ÅÂʼÆË㹫ʽµÄºÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÒÑÖªº¯Êý$f£¨x£©=\frac{2}{4^x}-x$£¬Éèa=0.2-2£¬b=log0.42£¬c=log43£¬ÔòÓУ¨¡¡¡¡£©
A£®f£¨a£©£¼f£¨c£©£¼f£¨b£©B£®f£¨c£©£¼f£¨b£©£¼f£¨a£©C£®f£¨a£©£¼f£¨b£©£¼f£¨c£©D£®f£¨b£©£¼f£¨c£©£¼f£¨a£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®Èô²»µÈʽ|ax+1|£¾2ÔÚ£¨1£¬+¡Þ£©ÉϺã³ÉÁ¢£¬ÔòʵÊýaµÄȡֵ·¶Î§Îª[1£¬+¡Þ£©¡È£¨-¡Þ£¬-3]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÔÚ¶àÃæÌåABCDEFGÖУ¬ËıßÐÎABCDÓëCDEFÊDZ߳¤¾ùΪaÕý·½ÐΣ¬CF¡ÍÆ½ÃæABCD£¬BG¡ÍÆ½ÃæABCD£¬ÇÒAB=2BG=4BH
£¨1£©ÇóÖ¤£ºÆ½ÃæAGH¡ÍÆ½ÃæEFG
£¨2£©Èôa=4£¬ÇóÈýÀâ×¶G-ADEµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÈôÕýÊýa£¬bÂú×ã3+log2a=2+log3b=log6£¨a+b£©£¬Ôò$\frac{1}{a}+\frac{1}{b}$µÈÓÚ£¨¡¡¡¡£©
A£®18B£®36C£®72D£®144

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÇúÏßy=-$\frac{1}{x}$ÔÚ£¨1£¬-1£©´¦µÄÇÐÏßµÄбÂÊΪ£¨¡¡¡¡£©
A£®-1B£®1C£®$\frac{1}{2}$D£®-$\frac{1}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®Ö±Ïßl£ºy=kx+1£¬Å×ÎïÏßC£ºy2=4x£¬Ö±ÏßlÓëÅ×ÎïÏßCÖ»ÓÐÒ»¸ö¹«¹²µã£¬Ôòk=0»ò1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÒÑ֪żº¯Êýf£¨x£©ÔÚ[-1£¬0]ÉÏΪµ¥µ÷Ôöº¯Êý£¬Ôò£¨¡¡¡¡£©
A£®f£¨sin$\frac{¦Ð}{8}$£©£¼f£¨cos$\frac{¦Ð}{8}$£©B£®f£¨sin1£©£¾f£¨cos1£©
C£®f£¨sin$\frac{¦Ð}{12}$£©£¼f£¨sin$\frac{5¦Ð}{12}$£©D£®f£¨sin$\frac{¦Ð}{12}$£©£¾f£¨tan$\frac{¦Ð}{12}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®½«Ò»¸ùÉþ×Ó¶ÔÕÛ£¬È»ºóÓüôµ¶ÔÚ¶ÔÕÛ¹ýµÄÉþ×ÓÉÏÈÎÒâÒ»´¦¼ô¶Ï£¬ÔòµÃµ½µÄÈýÌõÉþ×ӵij¤¶È¿ÉÒÔ×÷ΪÈý½ÇÐεÄÈý±ßÐεĸÅÂÊΪ£¨¡¡¡¡£©
A£®$\frac{1}{6}$B£®$\frac{1}{4}$C£®$\frac{1}{3}$D£®$\frac{1}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸