精英家教网 > 高中数学 > 题目详情
椭圆
x2
4
+y2=1中斜率为1的平行弦的中点的轨迹方程是
 
考点:椭圆的简单性质
专题:圆锥曲线的定义、性质与方程
分析:设弦的两端点分别为A(x1,y1)、B(x2,y2),中点为M(x,y),
解答: 解:(1)设弦的两端点分别为A(x1,y1)、B(x2,y2),中点为M(x,y),
则2x=x1+x2,2y=y1+y2
把A、B两点代入
x2
4
+y2=1得,
x12
4
+y12=1
x22
4
+y22=1

两式相减并整理可得,
x12-x22
4
+y12-y22=0

(x1+x2)(x1-x2)
4
+(y1+y2)(y1-y2)=0

x(x1-x2)
2
+2y(y1-y2)=0
,①
又平行弦AB的斜率为1,所以
y1-y2
x1-x2
=1
,代入式①得x+4y=0,
所求的轨迹方程为x+4y=0(椭圆内部分),
故答案为:x+4y=0(椭圆内部分).
点评:本题考查直线与椭圆的位置关系的应用,注意点差法的合理运用,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求证:
(1)lnx<
1
2
x2-
1
2
x(x≥2);
(2)
ln2
2
+
ln3
3
+…+
lnn
n
n(n-1)
4
(n≥2).

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}为正项等比数列,它的前k项和为80,其中最大项为54,前2k项和为6560,其中k∈N*
(Ⅰ)求数列{an}的首项a1和公比q;
(Ⅱ)设bn=log2an,n∈N*,求数列{bn}的前n项和b1+b2+b3+…+bn

查看答案和解析>>

科目:高中数学 来源: 题型:

圆的标准方程(x-a)2+(y-b)2=r2,圆心A(a,b),半径r,若点M(x0,y0)在圆上,则
 
;若点M(x0,y0)在圆外,则
 
;若点M(x0,y0)在圆内,则
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知P为抛物线y2=4x的焦点,过点P的直线l与抛物线交于A,B两点,若点Q在直线AB上,且满足|
PA
|•|
QB
|=|
QA
|•|
PB
|,求证:点Q总在某定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在空间四边形ABCD中,G是△BCD的重心,E、F、H分别为边CD、AD和BC的中点,化简下列各表达式,并标出化简结果的向量.
(1)
AG
+
1
3
BE
+
1
2
CA

(2)
1
2
AB
+
AC
-
AD

(3)
1
3
AB
+
AC
+
AD

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是双曲线上
x2
16
-
y2
9
=1除顶点外的任意一点,F1,F2分别为左右焦点,若△PF1F2内切圆与F1F2切于点M,则|F1M|•|F2M|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在矩形ABCD中,E是AD的中点,P是AB边上的点,AB=3,AD=2
(1)设AP=x,△DPE的周长为y,求函数y=f(x)的解析式;
(2)当∠DPE取得最大值时,求AP的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=
-2x+1,x≤0
ax2-x+a2-2,x>0
为减函数,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案