精英家教网 > 高中数学 > 题目详情
已知在空间四边形ABCD中,G是△BCD的重心,E、F、H分别为边CD、AD和BC的中点,化简下列各表达式,并标出化简结果的向量.
(1)
AG
+
1
3
BE
+
1
2
CA

(2)
1
2
AB
+
AC
-
AD

(3)
1
3
AB
+
AC
+
AD
考点:平面向量数量积的运算
专题:计算题,平面向量及应用
分析:运用向量的加减运算和向量的共线表示,以及三角形的重心的性质,即可化简得到.
解答: 解:(1)
AG
+
1
3
BE
+
1
2
CA
=
AB
+
BG
+
1
3
BE
+
1
2
CA

=
AB
+
2
3
BE
+
1
3
BE
+
1
2
CA

=
AB
+
BE
+
1
2
CA
=
AE
+
1
2
CA

=
1
2
AC
+
1
2
AD
+
1
2
CA
=
1
2
AD
=
AF

(2)
1
2
AB
+
AC
-
AD
)=
AH
-
1
2
AD
=
AH
-
AF
=
FH

(3)
1
3
AB
+
AC
+
AD
)=
1
3
×2
AH
+
1
3
AD

=
2
3
AH
+
1
2
AD
),
在三角形ADH中,
DG
=2
GH

AG
-
AD
=2(
AH
-
AG
),
即有
AG
=
1
3
(2
AH
+
AD
)

则有
1
3
AB
+
AC
+
AD
)=
AG
点评:本题考查向量的加减运算和向量共线的表示,考查运算能力,属于中档题和易错题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线C:y2=4x,直线l过定点M(a,0),a>0且与抛物线交于A、B两点,O为坐标原点,若∠AOB为锐角,则实数a的取值范围是(  )
A、0<a<4B、a>4
C、a≥2D、0<a<2

查看答案和解析>>

科目:高中数学 来源: 题型:

a
b
c
为单位向量,
a
b
的夹角为60°,则(
a
+
b
)•
c
的最大值为(  )
A、
3
B、
3
2
C、3
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆:
x2
a2
+
y2
b2
=1
(a>b>0)上存在点P使
PF1
PF2
<0,则离心率e∈(  )
A、(0,
2
2
B、(0,
2
2
]
C、(
2
2
,1)
D、(
2
2
,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆
x2
4
+y2=1中斜率为1的平行弦的中点的轨迹方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(-2,0),B(2,0)为坐标平面上两个定点,动点M在x轴上的射影为N,且满足|MN|2=4|AN|•|BN|.
(1)在平面直角坐标系中画出动点M的轨迹;
(2)是否存在过原点的直线l,它与(1)中轨迹有4个公共点,且相邻公共点之间的距离都相等?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设变量x、y满足
2x+7y-14≥0
5x+2y-10≥0
x,y∈N
,则4x+9y的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(ωx+
π
6
)(ω>0),y=f(x)的图象与直线y=2的两个相邻交点的距离的最小值等于
π
3
,则f(x)的单调递增区间是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体的底面与正四面体的底面在同一平面α上,且棱AB所在的直线与棱CD所在的直线互相平行,正方体的六个面所在的平面与直线CE、EF相交的平面个数分别记为m,n,那么m=
 
;n=
 

查看答案和解析>>

同步练习册答案