精英家教网 > 高中数学 > 题目详情
14.在△ABC,若(c+a)(c-a)=a2+b2,则角A的最大值为30°.

分析 由已知可得a2=$\frac{1}{2}$(c2-b2),利用余弦定理以及基本不等式求出A的余弦函数的范围,然后即可求解A的最大值.

解答 解:∵(c+a)(c-a)=a2+b2,可得:c2-a2=a2+b2,即:a2=$\frac{1}{2}$(c2-b2),
∴由余弦定理可得:cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{{b}^{2}+{c}^{2}-\frac{{c}^{2}-{b}^{2}}{2}}{2bc}$=$\frac{c}{4b}$+$\frac{3b}{4c}$≥2$\sqrt{\frac{c}{4b}×\frac{3b}{4c}}$=$\frac{\sqrt{3}}{2}$,
∵A为三角形的内角,余弦函数的值越小则角度越大,
∵cosA≥$\frac{\sqrt{3}}{2}$,
∴∠A≤30°,
即∠A最大值为30°.
故答案为:30°.

点评 本题主要考查了余弦定理的应用,余弦函数的图象和性质,基本不等式求解最值,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知Sn为数列{an}的前n项和,且满足an=2Sn-1+2(n≥2);数列{bn}满足b1+b2+b3+…+bn=n2+n.
(1)数列{an}是等比数列吗?请说明理由;
(Ⅱ)若a1=b1,求数列{an•bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)=($\sqrt{3}$-tanx)cos2x,x∈($\frac{π}{2}$,π]的单调减区间是[$\frac{11π}{12}$,π].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在△ABC中,若cos(A-B)cosB=sin(A-B)sinB,则△ABC是直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.若lgx+lgy=2,求5x+2y的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知直线l:y=x+1与函数f(x)=eax+b的图象相切,且f′(1)=e.
(1)求实数a,b的值;
(2)若在曲线y=mf(x)上存在两个不同的点A(x1、mf(x1),B(x2,mf(x2))关于y轴的对称点均在直线l上,证明:x1+x2>4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在等差数列{an}中,a1=3,其中前n项和为Sn.等比数列{bn}的各项均为正数,b1=1,且b2+S3=21,b3=S2
(1)求an与bn
(2)设数列{bn}的前n项和为Tn,求使不等式4Tn>S15成立的最小正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.数列{an}满足:${a_3}=\frac{1}{5},{a_n}-{a_{n+1}}=2{a_n}{a_{n+1}}$,则数列{anan+1}前10项的和为(  )
A.$\frac{10}{21}$B.$\frac{20}{21}$C.$\frac{9}{19}$D.$\frac{18}{19}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0}
(1)若A∩B=B,求实数a的值;
(2)若A∪B=B,求实数a的值.

查看答案和解析>>

同步练习册答案