分析 ${a_1}=1,{a_n}=\frac{{2{S_n}^2}}{{2{S_n}-1}}({n≥2})$,可得(Sn-Sn-1)(2Sn-1)=2${S}_{n}^{2}$,化为:$\frac{1}{{S}_{n}}$-$\frac{1}{{S}_{n-1}}$=2,利用等差数列的通项公式即可得出.
解答 解:∵${a_1}=1,{a_n}=\frac{{2{S_n}^2}}{{2{S_n}-1}}({n≥2})$,
∴(Sn-Sn-1)(2Sn-1)=2${S}_{n}^{2}$,
化为:$\frac{1}{{S}_{n}}$-$\frac{1}{{S}_{n-1}}$=2,
∴数列$\{\frac{1}{{S}_{n}}\}$是等差数列,首项为1,公差为2.
∴$\frac{1}{{S}_{n}}$=1+2(n-1)=2n-1.
∴Sn=$\frac{1}{2n-1}$.
则S2016=$\frac{1}{2×2016-1}$=$\frac{1}{4031}$.
故答案为:$\frac{1}{4031}$.
点评 本题考查了递推关系、等差数列的通项公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{\sqrt{5}-1}{2}$,$\frac{\sqrt{2}}{2}$) | B. | ($\frac{\sqrt{5}-1}{2}$,1) | C. | (0,$\frac{\sqrt{5}-1}{2}$) | D. | ($\frac{\sqrt{2}}{2}$,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=sinx | B. | f(x)=2cosx+1 | C. | f(x)=2x-1 | D. | $f(x)=ln\frac{1-x}{1+x}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{2}$ | B. | 6 | C. | 14 | D. | 16 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com