精英家教网 > 高中数学 > 题目详情
1.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1,F1,F2是椭圆的两个焦点,A为椭圆的右顶点,B为椭圆的上顶点.若在线段AB(不含端点)上存在不同的两个点A1,A2,使得△F1A1F2和△F1A2F2均为以F1F2为斜边的直角三角形,则椭圆的离心率的取值范围为(  )
A.($\frac{\sqrt{5}-1}{2}$,$\frac{\sqrt{2}}{2}$)B.($\frac{\sqrt{5}-1}{2}$,1)C.(0,$\frac{\sqrt{5}-1}{2}$)D.($\frac{\sqrt{2}}{2}$,1)

分析 由题意作图辅助,从而可转化为以F1F2为直径的圆与线段AB有两个交点(不含端点),从而化为c<b且圆心到直线bx+ay-ab=0的距离d<c,从而解得.

解答 解:由题意作图如右,
若△F1A1F2和△F1A2F2均为以F1F2为斜边的直角三角形,
则以F1F2为直径的圆与线段AB有两个交点(不含端点),
故c<b,故e<$\frac{\sqrt{2}}{2}$;
∵直线AB的方程为$\frac{x}{a}$+$\frac{y}{b}$=1,即bx+ay-ab=0,
∴圆心到直线bx+ay-ab=0的距离d=$\frac{ab}{\sqrt{{a}^{2}+{b}^{2}}}$<c,
即ab<c$\sqrt{{a}^{2}+{b}^{2}}$,
即a4-3a2c2+c4<0,
即1-3e2+e4<0,
故$\frac{3-\sqrt{5}}{2}$<e2<$\frac{3+\sqrt{5}}{2}$;
故$(\frac{\sqrt{5}-1}{2})^{2}$<e2<$(\frac{\sqrt{5}+1}{2})^{2}$;
故$\frac{\sqrt{5}-1}{2}$<e<$\frac{\sqrt{5}+1}{2}$,
故e∈($\frac{\sqrt{5}-1}{2}$,$\frac{\sqrt{2}}{2}$),
故选:A.

点评 本题考查了椭圆与直线的位置关系的应用及数形结合的思想应用,同时考查了转化思想的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.将4个球随机放入3个空盒,则所有球都在两个盒中,但不是全在一个盒子里的概率为(  )
A.$\frac{7}{27}$B.$\frac{2}{3}$C.$\frac{14}{27}$D.$\frac{14}{81}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(α>b>0)的右焦点到直线x-y+3$\sqrt{2}$=0的距离为5,且椭圆的一个长轴端点与一个短轴端点间的距离为$\sqrt{10}$.
(1)求椭圆C的方程;
(2)在x轴上是否存在点Q,使得过Q的直线与椭圆C交于A、B两点,且满足$\frac{1}{Q{A}^{2}}$+$\frac{1}{Q{B}^{2}}$为定值?若存在,请求出定值,并求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知M=$\frac{{C}_{2015}^{0}}{1}$-$\frac{{C}_{2015}^{1}}{2}$+$\frac{{C}_{2013}^{2}}{3}$-$\frac{{C}_{2015}^{3}}{4}$+…+$\frac{{C}_{2015}^{2014}}{2015}$-$\frac{{C}_{2015}^{2015}}{2016}$,则M的值为$\frac{1}{2016}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若函数f(x)=x2log2(x+$\sqrt{x^2+m}$)为奇函数,则m=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}的前n项和为Sn,a1=1,an+1=(λ+1)Sn+1(n∈N*,λ≠-2),且3a1,4a2,a3+13成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足anbn=log4an+1,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列函数中满足$f(\frac{{{x_1}+{x_2}}}{2})<\frac{{f({x_1})+f({x_2})}}{2}({x_1}≠{x_2})$的是(  )
A.f(x)=3x+2B.$f(x)=\sqrt{x}$C.$f(x)=-{(\frac{1}{2})^x}$D.f(x)=x2+x+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在公差不为零的等差数列{an}中,a1=1,a2、a4、a8成等比数列.
(Ⅰ)求数列{an}的通项公式an
(Ⅱ)设bn=2${\;}^{{a}_{n}}$,Tn=b1+b2+…+bn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知数列{an}的前n项和为Sn,且${a_1}=1,{a_n}=\frac{{2{S_n}^2}}{{2{S_n}-1}}({n≥2})$,则S2016=$\frac{1}{4031}$.

查看答案和解析>>

同步练习册答案