| A. | [e+1,+∞) | B. | (e+1,+∞) | C. | (e-1,+∞) | D. | [e-1,+∞) |
分析 若函数f(x)=$\left\{\begin{array}{l}{{e}^{x}-a(x<1)}\\{ln(x+a)(x≥1)}\end{array}\right.$,在R上是增函数,则e-a≤ln(1+a),解不等式可得实数a的取值范围.
解答 解:∵函数f(x)=$\left\{\begin{array}{l}{{e}^{x}-a(x<1)}\\{ln(x+a)(x≥1)}\end{array}\right.$,其中a>-1在R上是增函数,
∴e-a≤ln(1+a),即ln(1+a)-e+a≥0,
令g(a)=ln(1+a)-e+a,则g′(a)=$\frac{1}{1+a}$+1,
当a>-1时,g′(a)>0恒成立,
又由g(e-1)=0,
故ln(1+a)-e+a≥0可化为:a≥e-1,
故实数a的取值范围是[e-1,+∞),
故选:D
点评 本题考查的知识点是分段函数的应用,导数法求函数的最值,难度中档.
科目:高中数学 来源: 题型:解答题
| $\overline x$ | $\overline y$ | $\overline w$ | $\sum_{i=1}^{10}{{{({x_i}-\overline x)}^2}}$ | $\sum_{i=1}^{10}{{{({w_i}-\overline w)}^2}}$ | $\sum_{i=1}^{10}{({x_i}-\overline x)}({y_i}-\overline y)$ | $\sum_{i=1}^{10}{({w_i}-\overline w)}({y_i}-\overline y)$ |
| 1.47 | 20.6 | 0.78 | 2.35 | 0.81 | -19.3 | 16.2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 向上平移1个单位 | B. | 向下平移1个单位 | C. | 向左平移1个单位 | D. | 向右平移1个单位 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{{\sqrt{2}}}{3}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com