【题目】已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元.设该公司一年内共生产该品牌服装x千件并全部销售完,每千件的销售收入为万元,且.
(1)写出年利润W(万元)关于年产量x(千件)的函数解析式;
(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获得利润最大?(注:年利润=年销售收入﹣年总成本)
【答案】(1);(2)当年产量为9千件时,该公司在这一品牌服装的生产中所获年利润最大.
【解析】试题分析:本题考查的知识点是分段函数及函数的最值,分段函数分段处理,这是研究分段函数图象和性质最核心的理念,具体做法是:分段函数的定义域、值域是各段上x、y取值范围的并集,分段函数的奇偶性、单调性要在各段上分别论证;分段函数的最大值,是各段上最大值中的最大者.第一问,由年利润W=年产量x×每千件的销售收入为R(x)﹣成本,又由,且年固定成本为10万元,每生产1千件需另投入2.7万元.我们易得年利润W(万元)关于年产量x(千件)的函数解析式;
第二问,由第一问的解析式,我们求出各段上的最大值,即利润的最大值,然后根据分段函数的最大值是各段上最大值的最大者,即可得到结果.
试题解析:(1)当时, ;
当时, .
∴.
(2)①当时,由,得,
且当时, ;当时, ,
∴当时,W取最大值,且,
②当时, ,
当且仅当,
即时, ,
故当时,W取最大值38.
综合①②知当时,W取最大值38.6万元,故当年产量为9千件时,该公司在这一品牌服装的生产中所获年利润最大.
科目:高中数学 来源: 题型:
【题目】某商店为了解气温对某产品销售量的影响,随机记录了该商店月份中天的日销售量(单位:千克)与该地当日最低气温(单位:℃)的数据,如表所示:
(1)求与的回归方程:
(2)判断与之间是正相关还是负相关;若该地月份某天的最低气温为,请用(1)中的回归方程预测该商店当日的销售量.
参考公式:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】七巧板是古代中国劳动人民发明的一种中国传统智力玩具,它由五块等腰直角三角形,一块正方形和一块平行四边形共七块板组成.清陆以湉《冷庐杂识》卷一中写道:近又有七巧图,其式五,其数七,其变化之式多至千余.体物肖形,随手变幻,盖游戏之具,足以排闷破寂,故世俗皆喜为之.如图是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自阴影部分的概率为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图(1)是一直角墙角,,墙角的两堵墙面和地面两两互相垂直.是一块长为米,宽为米的板材,现欲用板材与墙角围成一个直棱柱空间堆放谷物.
(1)若按如图(1)放置,如何放置板材才能使这个直棱柱空间最大?
(2)由于墙面使用受限,面只能使用米,面只能使用米.此矩形板材可以折叠围成一个直四棱柱空间,如图(2),如何折叠板材才能使这个空间最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,设是平面内相交成角的两条数轴 ,分别是轴,轴正方向同向的单位向量,若向量,则把有序数对叫做向量在坐标系中的坐标,假设.
(1)计算的大小;
(2)设向量,若与共线,求实数的值;
(3)是否存在实数,使得与向量垂直,若存在求出的值,若不存在请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本题满分12分)已知函数f(x)=ex, g(x)=lnx.
(1)设f(x)在x1处的切线为l1, g(x)在x2处的切线为l2,若l1//l2,求x1+g(x2)的值;
(2)若方程af 2(x)-f(x)-x=0有两个实根,求实数a的取值范围;
(3)设h(x)=f(x)(g(x)-b),若h(x)在[ln2,ln3]内单调递减,求实数b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的左、右焦点分别为,,过且垂直于轴的焦点弦的弦长为,过的直线交椭圆于,两点,且的周长为.
(1)求椭圆的方程;
(2)已知直线,互相垂直,直线过且与椭圆交于点,两点,直线过且与椭圆交于,两点.求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com