精英家教网 > 高中数学 > 题目详情
18.已知数列{an}通项an=10n(n∈N*),${b_n}=\frac{1}{{lg{a_n}•lg{a_{n+2}}}}$,则数列{bn}前n项和为(  )
A.$1-\frac{1}{n+2}$B.$1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2}$
C.$\frac{1}{2}(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2})$D.$2(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2})$

分析 通过数列{an}通项公式及对数运算法则,裂项可知bn=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),进而并项相加即得结论.

解答 解:∵数列{an}通项an=10n(n∈N*),${b_n}=\frac{1}{{lg{a_n}•lg{a_{n+2}}}}$,
∴bn=$\frac{1}{n(n+2)}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),
∴数列{bn}前n项和为$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{2}$-$\frac{1}{4}$+…+$\frac{1}{n}$-$\frac{1}{n+2}$)
=$\frac{1}{2}$(1+$\frac{1}{2}$-$\frac{1}{n+1}$-$\frac{1}{n+2}$),
故选:C.

点评 本题考查数列的通项及前n项和,利用裂项相消法是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知f(x)是奇函数,当x>0时,f(x)=x3-x-1,则当x<0时,f(x)=x3-x+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.用秦九韶算法计算多项式f(x)=2x6-2x5-x3+x2-2x+4,当x=2时,求f(x)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数f(x)=asinx+bxcosx-2ctanx+x2,若f(-2)=3,则f(2)=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若t∈(0,1],则t+$\frac{2}{t}$有最小值(  )
A.2$\sqrt{2}$B.3C.-2$\sqrt{2}$D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.计算:
(1)${0.027^{-\frac{1}{3}}}-{(-\frac{1}{7})^{-2}}+{256^{\frac{3}{4}}}-{3^{-1}}+{(\sqrt{2}-1)^0}$
(2)$\frac{5}{2}lg2-\frac{4}{3}lg\sqrt{8}+lg\sqrt{245}-lg7$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设θ为第四象限角,若$tan(θ+\frac{π}{4})=\frac{1}{2}$,则sinθ+2cosθ=$\frac{\sqrt{10}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知二次函数f(x)=x2-16x+q+3
(1)若函数在区间[-1,1]上存在零点,求实数q的取值范围;
(2)问:是否存在常数q(0<q<10),使得当x∈[q,10]时,f(x)的最小值为-51?若存在,求出q的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.定义在R上的函数f(x)满足f(x+6)=f(x).当-3≤x<-1时,f(x)=-(x+2)2;当-1≤x<3时,f(x)=x,则f(1)+f(2)+f(3)+…+f(2012)=(  )
A.335B.1678C.338D.2012

查看答案和解析>>

同步练习册答案