精英家教网 > 高中数学 > 题目详情
3.计算:
(1)${0.027^{-\frac{1}{3}}}-{(-\frac{1}{7})^{-2}}+{256^{\frac{3}{4}}}-{3^{-1}}+{(\sqrt{2}-1)^0}$
(2)$\frac{5}{2}lg2-\frac{4}{3}lg\sqrt{8}+lg\sqrt{245}-lg7$.

分析 (1)利用有理数指数幂性质、运算法则求解.
(2)利用对数性质、运算法则求解.

解答 (本题满分12分)计算:
解:(1)${0.027^{-\frac{1}{3}}}-{(-\frac{1}{7})^{-2}}+{256^{\frac{3}{4}}}-{3^{-1}}+{(\sqrt{2}-1)^0}$
=${(\frac{1000}{27})^{\frac{1}{3}}}-{(-7)^2}+{({2^8})^{\frac{3}{4}}}-\frac{1}{3}+1$
=${(\frac{{{{10}^3}}}{3^3})^{\frac{1}{3}}}-49+{2^6}-\frac{1}{3}+1$
=$\frac{10}{3}-49+64-\frac{1}{3}+1$=19.…(6分)
(2)$\frac{5}{2}lg2-\frac{4}{3}lg\sqrt{8}+lg\sqrt{245}-lg7$
=$lg{2^{\frac{5}{2}}}-lg{2^{(\frac{3}{2}×\frac{4}{3})}}+lg\sqrt{245}-lg7$
=$lg4\sqrt{2}-lg4+lg\sqrt{245}-lg7$
=$lg\sqrt{2}+lg\sqrt{245}-lg7$
=$lg\sqrt{\frac{490}{49}}=lg\sqrt{10}=\frac{1}{2}$.…(12分)

点评 本题考查指数式、对数式化简求值,是基础题,解题时要认真审题,注意对数、指数性质、运算法则的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)在(-∞,2]上为减函数,且f(x+2)是R上的偶函数,若f(a)≥f(3),则实数a的取值范围是a≤1或a≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.给定平面上四点O,A,B,C满足OA=4,OB=2,OC=2,$\overrightarrow{OB}$•$\overrightarrow{OC}$=2,则△ABC面积的最大值为$\sqrt{3}+4$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(x,1)
(1)若$\overrightarrow{a}$∥$\overrightarrow{b}$,求x的值.
(2)若<$\overrightarrow{a}$,$\overrightarrow{b}$>为锐角,求x的范围;
(3)当($\overrightarrow{a}$+2$\overrightarrow{b}$)⊥(2$\overrightarrow{a}$-$\overrightarrow{b}$)时,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知数列{an}通项an=10n(n∈N*),${b_n}=\frac{1}{{lg{a_n}•lg{a_{n+2}}}}$,则数列{bn}前n项和为(  )
A.$1-\frac{1}{n+2}$B.$1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2}$
C.$\frac{1}{2}(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2})$D.$2(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设p:$\left\{\begin{array}{l}{4x+3y-12≥0}\\{3-x≥0}\\{x+3y≤12}\end{array}\right.$(x,y∈R),q:x2+y2≤r2(x,y∈R,r>0)若p是q的充分不必要条件,则r的取值范围是[3$\sqrt{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设全集U=R,A={x|x(x-2)<0},B={x|x<1},则图中阴影部分表示的集合为(  )
A.{x|x≥1}B.{x|1≤x<2}C.{x|x≤1}D.{x|0<x≤1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.计算下列各式的值
(1)log3$\sqrt{27}$+lg25+lg4$+{({0.125})^{\frac{1}{3}}}$
(2)已知a${\;}^{\frac{1}{2}}$+a${\;}^{-\frac{1}{2}}$=3,求值:$\frac{{a+{a^{-1}}}}{{{a^2}+{a^{-2}}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.若函数f(x)满足下列条件:在定义域内存在x0,使得f(x0+1)=f(x0)+f(1)成立,则称函数f(x)具有性质M;反之,若x0不存在,则称函数f(x)不具有性质M
(Ⅰ)证明:函数f(x)=2x具有性质M,并求出对应的x0的值;
(Ⅱ) 试探究函数y=ax(a>0且a≠1)是否具有性质M?并加以证明.

查看答案和解析>>

同步练习册答案