精英家教网 > 高中数学 > 题目详情
9.用秦九韶算法计算多项式f(x)=2x6-2x5-x3+x2-2x+4,当x=2时,求f(x)的值.

分析 把所给的多项式写成关于x的一次函数的形式,依次写出,得到最后结果,从里到外进行运算,得到要求的值.

解答 解:由秦九韶算法计算多项式f(x)=2x6-2x5-x3+x2-2x+4
=(((((2x-2)x+0)x-1)x+1)x-2)x+4.
∴当x=2时的值时,
V0=2,V1=2,V2=4,V3=7,V4=15,V5=28,V6=60,
∴当x=2时,f(x)=60.

点评 本题考查秦九韶算法,本题解题的关键是对多项式进行整理,得到符合条件的形式,不管是求计算结果还是求加法和减法的次数都可以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知点P是直线l:y=2x+3上任一点,M(4,-1),则|PM|的最小值为$\frac{12\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知圆C1:x2+y2+4x=0,圆C2:x2+y2-4x-60=0,动圆 M和圆C1外切,和圆C2内切,则动圆圆心M的轨迹方程为$\frac{x^2}{25}+\frac{y^2}{21}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某校为了调查“学业水平考试”学生的数学成绩,随机地抽取该校甲、乙两班各10名同学,获得的数据如下:(单位:分)
132108112121113121118127118129
133107120113122114125118129127
(1)以百位和十位为茎,个位为叶,在图中作出甲、乙两班学生数学成绩的茎叶图,并判列哪个班的平均水平较高;
(2)若数学成绩不低于128分,称为“优秀”,求从甲班这10名学生中随机选取3名,至多有1名“优秀”的概率.
(3)以这20人的样本数据来估计整个学校的总体成绩,若从该校(人数很多)任选3人,记X表示抽到“优秀”学生的人数,求X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.给出下列命题:
①命题“?x∈k,cosx>0”的否定是“?x∈R,cosx≤0”
②函数$f(x)=\frac{{{a^x}-1}}{{{a^x}+1}}(a>0$且a≠1)在R上是单调函数
③设f(x)是R上的任意函数,则f(x)|f(-x)|是奇函数,f(x)+f(-x)是偶函数
④定义在R上的函数f(x)对任意x的都有$f(x-2)=-\frac{4}{f(x)}$,则f(x)为周期函数
其中真命题的是①②④(把所有真命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.给定平面上四点O,A,B,C满足OA=4,OB=2,OC=2,$\overrightarrow{OB}$•$\overrightarrow{OC}$=2,则△ABC面积的最大值为$\sqrt{3}+4$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知A={x∈Z|x2-x+b<0}只有一个子集,则b值范围是(  )
A.[$\frac{1}{4}$,+∞)B.[0,+∞)C.($\frac{1}{4}$,+∞)D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知数列{an}通项an=10n(n∈N*),${b_n}=\frac{1}{{lg{a_n}•lg{a_{n+2}}}}$,则数列{bn}前n项和为(  )
A.$1-\frac{1}{n+2}$B.$1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2}$
C.$\frac{1}{2}(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2})$D.$2(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若无穷等比数列{an}的前n项和为Sn,首项为1,公比为a-1.5,且$\lim_{n→∞}{S_n}$=a,则a=2.

查看答案和解析>>

同步练习册答案