精英家教网 > 高中数学 > 题目详情

设函数f(x)=x3+2ax2bxag(x)=x2-3x+2,其中x
R,ab为常数,已知曲线yf(x)与yg(x)在点(2,0)处有相同的切线l.
ab的值,并求出切线l的方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ax2-(2a+1)x+2lnx(a∈R).
(1)若曲线y=f(x)在x=1和x=3处的切线互相平行,求a的值;
(2)当a≤0时,求f(x)的单调区间。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(a为实数).
(1) 当a=5时,求函数处的切线方程;
(2) 求在区间)上的最小值;
(3) 若存在两不等实根,使方程成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

f(x)=x3ax2bx+1的导数f′(x)满足f′(1)=
2af′(2)=-b,其中ab∈R.
①求曲线yf(x)在点(1,f(1))处的切线方程;②设g(x)=f′(x)ex,求g(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线yx2+1,求过点P(0,0)的曲线的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)设是函数的极值点,求的值并讨论的单调性;
(2)当时,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求垂直于直线2x-6y+1=0并且与曲线yx3+3x2-5相切的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数处取得极小值.
(1)若函数的极小值是,求
(2)若函数的极小值不小于,问:是否存在实数,使得函数上单调递减?若存在,求出的范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x2+xsinx+cosx.
(1)若曲线y=f(x)在点(a,f(a))处与直线y=b相切,求a与b的值;
(2)若曲线y=f(x)与直线y=b有两个不同交点,求b的取值范围.

查看答案和解析>>

同步练习册答案