分析 (1)由题意可知,$b=1,\frac{c}{a}=\sqrt{2}$,c2=a2+b2.基础即可得出.
直线y=kx-1与双曲线E联立可得:(1-k2)x2+2kx-2=0.利用直线y=kx-1与双曲线E的右支交于A、B两点的特点即可得出.
(2)利用一元二次方程的根与系数的关系、弦长公式可得k,再利用向量相等、点与双曲线的位置关系即可得出m.
解答 解:(1)由题意可知,$b=1,\frac{c}{a}=\sqrt{2}$,c2=a2+b2.
∴a=b=1,
∴双曲线方程为E:x2-y2=1,
直线y=kx-1与双曲线E联立可得:(1-k2)x2+2kx-2=0.
则:$\left\{\begin{array}{l}1-{k^2}≠0\\△>0\\ \frac{2k}{{{k^2}-1}}>0\;\;\;\;\;\;\;\;\;\;\;⇒\;\;\;\;1<k<\sqrt{2}\\ \frac{2}{{{k^2}-1}}>0\end{array}\right.$.
(2)设A(x1,y1),B(x2,y2).
则x1+x2=$\frac{-2k}{1-{k}^{2}}$,x1x2=$\frac{-2}{1-{k}^{2}}$.
∵$|{AB}|=6\sqrt{3}$,∴$\sqrt{(1+{k}^{2})[({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}]}$=2$\sqrt{\frac{(1+{k}^{2})(2-{k}^{2})}{({k}^{2}-1)^{2}}}$=6$\sqrt{3}$.
得:$28{k^4}-55{k^2}+25=0\;\;\;∴{k^2}=\frac{5}{7}或{k^2}=\frac{5}{4}$
又∵$1<k<\sqrt{2}\;\;\;\;∴\;k=\frac{{\sqrt{5}}}{2}$.
∵${x_1}+{x_2}=\frac{2k}{{{k^2}-1}}=4\sqrt{5}\;\;\;\;\;\;{y_1}+{y_2}=k({x_1}+{x_2})-2=8$.
设C(x0,y0),由$\overrightarrow{OC}=m(\overrightarrow{OA}+\overrightarrow{OB})$,
∴(x0,y0)=$(4\sqrt{5}m,8m)$,∴$80{m^2}-64{m^2}=1⇒m=±\frac{1}{4}$,
∴$k=\frac{{\sqrt{5}}}{2},m=±\frac{1}{4}$.
点评 本题考查了双曲线的标准方程及其性质、直线与双曲线相交弦长问题、向量坐标运算性质、一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于难题.
科目:高中数学 来源: 题型:选择题
| A. | ①② | B. | ②③ | C. | ①③ | D. | ①②③ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 1 | C. | -$\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com