分析 由an+1=$\left\{\begin{array}{l}{\frac{1}{2}({a}_{n}+n)(n为奇数)}\\{2{a}_{n}-n(n为偶数)}\end{array}\right.$,可得:a2k+1=2a2k-2k=2×$\frac{1}{2}$(a2k-1+2k-1)-2k=a2k-1-1,可得a2k+1-a2k-1=-1,利用等差数列的通项公式可得:a2k-1,a2k+1代入bn=a2n+1+4n-2,即可得出.
解答 解:由an+1=$\left\{\begin{array}{l}{\frac{1}{2}({a}_{n}+n)(n为奇数)}\\{2{a}_{n}-n(n为偶数)}\end{array}\right.$,
可得:a2k+1=2a2k-2k=2×$\frac{1}{2}$(a2k-1+2k-1)-2k=a2k-1-1,∴a2k+1-a2k-1=-1,
∴数列{a2k-1}成等差数列,∴a2k-1=2-(k-1)=3-k.
∴bn=a2n+1+4n-2=3-(n+1)+4n-2=3n.
点评 本题考查了数列递推关系、等差数列的通项公式,考查了分类讨论方法、推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (2-$\sqrt{2}$,1] | B. | (2-$\sqrt{2}$,2+$\sqrt{2}$] | C. | (-∞,2-$\sqrt{2}$)∪(2+$\sqrt{2}$,+∞) | D. | [-1,$\sqrt{2}$-2) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,$\frac{1}{2}$] | B. | [$\frac{1}{2}$,+∞) | C. | (-2,$\frac{1}{2}$] | D. | [$\frac{1}{2}$,3) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com