精英家教网 > 高中数学 > 题目详情
7.若直线y=x-b与曲线$\left\{\begin{array}{l}{x=2+cosθ}\\{y=sinθ}\end{array}\right.$,(θ∈[0,π])有两个不同的公共点,则实数b的取值范围为(  )
A.(2-$\sqrt{2}$,1]B.(2-$\sqrt{2}$,2+$\sqrt{2}$]C.(-∞,2-$\sqrt{2}$)∪(2+$\sqrt{2}$,+∞)D.[-1,$\sqrt{2}$-2)

分析 求出曲线的普通方程,由公共点个数可知直线与圆相交,求出圆心到直线的距离d,令d<r解不等式得出b的范围.

解答 解:曲线$\left\{\begin{array}{l}{x=2+cosθ}\\{y=sinθ}\end{array}\right.$,(θ∈[0,π])的普通方程为(x-2)2+y2=1(y≥0).
∴曲线的圆心为A(2,0),半径为1.
直线y=x-b的一般方程为x-y-b=0.
∵曲线$\left\{\begin{array}{l}{x=2+cosθ}\\{y=sinθ}\end{array}\right.$,(θ∈[0,π])有两个不同的公共点,
∴圆心A(2,0)到直线l的距离d<1.
∴$\frac{|2-b|}{\sqrt{2}}$<1,解得2-$\sqrt{2}$<b<2+$\sqrt{2}$.
过(1,0)时,b=1,
∴实数b的取值范围是2-$\sqrt{2}$<b≤1.
故选A.

点评 本题考查了参数方程与普通方程的转化,直线与圆的位置关系.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知等差数列{an}的首项为4,公差为2,前n项和为Sn,若Sk-ak+5=44(k∈N*),则k的值为(  )
A.6B.7C.8D.7或-8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,求向量$\overrightarrow{a}$+2$\overrightarrow{b}$与$\overrightarrow{a}$-$\overrightarrow{b}$的夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知f(x)是定义在[5-2a,a]上的奇函数,且当x∈[-5,0)时,f(x)=-x (4-x).
(1)f(x)的解析式;
(2)求f(x)的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}满足:a1=2,an+1=$\left\{\begin{array}{l}{\frac{1}{2}({a}_{n}+n)(n为奇数)}\\{2{a}_{n}-n(n为偶数)}\end{array}\right.$,设bn=a2n+1+4n-2,n∈N*,求数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合A={-2,-1,0,1,2},B={x|-2<x<2},则A∩B=(  )
A.{-2,-1,0,1,2}B.{-2,-1,0,1}C.{-1,0,1,2}D.{-1,0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.下列命题
①命题“?x0∈R,x02+1>3x0”的否定是“?x∈R,x2+1≤3x”;
②“函数f(x)=cos2ax-sin2ax的最小正周期为π”是“a=1”的必要不充分条件;
③“平面向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角是钝角”的充分必要条件是“$\overrightarrow{a}•\overrightarrow{b}$<0”;
④设有四个函数y=x-1,y=${x^{\frac{1}{2}}}$,y=x2,y=x3其中在(0,+∞)上是增函数的函数有3个.
真命题的序号是①②④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}满足Sn+an=2n+1(n∈N*),其中Sn表示数列{an}的前n项和.
(Ⅰ)求出a1,a2,a3,并推测数列{an}的表达式;
(Ⅱ)用数学归纳法证明所得的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知tanx=2,则$\frac{3cosx+2sinx}{4cosx-5sinx}$=-$\frac{7}{6}$.

查看答案和解析>>

同步练习册答案