精英家教网 > 高中数学 > 题目详情
7.设关于x不等式x2+n2-x<3nx-n2-n(n∈N*)的解集中整数的个数为an,数列{${\frac{{2{a_n}+1}}{2^n}}\right.$}的前n项和为Dn,则满足条件?n∈N*,Dn<t的常数t的最小整数为5.

分析 通过解已知不等式可以求得x的取值范围;利用错位相减法可以求得Dn通项公式.

解答 解:原不等式可化为x2-(3n-1)x+2n2+n<0,即[x-(2n+1)](x-n)<0,
可解得n<x<2n+1,(n∈N*),
其中满足x的整数个数an=n•${\frac{{2{a_n}+1}}{2^n}}\right.$=$\frac{2n+1}{{2}^{n}}$,则
Dn=$\frac{3}{{2}^{1}}$+$\frac{5}{{2}^{2}}$+$\frac{7}{{2}^{3}}$+…+$\frac{2n+1}{{2}^{n}}$,
$\frac{1}{2}$Dn=$\frac{3}{{2}^{2}}$+$\frac{5}{{2}^{3}}$+$\frac{7}{{2}^{4}}$+…+$\frac{2n+1}{{2}^{n+1}}$,
两式相减,得
$\frac{1}{2}$Dn=$\frac{3}{2}$+2($\frac{1}{2}$-$\frac{2}{{2}^{n}}$)-$\frac{2n+1}{{2}^{n+1}}$=$\frac{5}{2}$-$\frac{2n+5}{{2}^{n}}$,
所以Dn=5-$\frac{2n+5}{{2}^{n}}$,
设f(x)=$\frac{2x+5}{{2}^{x}}$,x≥0,
f′(x)=$\frac{{2}^{x+1}-(2x+5){2}^{x}ln2}{{4}^{x}}$<0,
则f(x)在[0,+∞)上单调递减,x→+∞时,Dn→5,
所以t的最小整数为5.
故答案是:5.

点评 本题考查了数列与函数的综合.根据条件推出数列的递推关系是解决本题的关键.综合性较强,有一定的难度.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.两圆C1:x2+y2-2x-3=0,C2:x2+y2-4x+2y+4=0的位置关系是(  )
A.相离B.相切C.相交D.内含

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.数列{an}各项均为正数,且对任意n∈N*,满足an+1=an+ca${\;}_{n}^{2}$(c>0为常数).
(1)求证:对任意正数M,存在N∈N*,当n>N时有an>M;
(2)设bn=$\frac{1}{1+c{a}_{n}}$,Sn是{bn}前n项和,求证:对任意d>0,存在N∈N*,当n>N时有0<|Sn-$\frac{1}{c{a}_{1}}$|<d.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.将点的直角坐标(2,2)化成极坐标得(  )
A.(2$\sqrt{2}$,$\frac{2π}{3}}$)B.(-4,$\frac{2π}{3}}$)C.(-4,$\frac{π}{3}}$)D.(2$\sqrt{2}$,$\frac{π}{4}}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.线段x-2y+1=0(-1≤x≤3)的垂直平分线方程为2x-y-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若关于x的不等式x2-ax-a≤-3的解集不是空集,则实数a的取值范围是(  )
A.[2,+∞)B.(-∞,-6]C.[-6,2]D.(-∞,-6]∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知f(x)是定义在(0,+∞)上的函数,且对任意正数x,y都满足f(x+y)=f(x)f(y),且当x>1时,f(x)>2,f(2)=4.则f(x2)>2f(x+1)的解为{x|x>2}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=2|$\overrightarrow{b}$|=2,|$\overrightarrow{a}$-4$\overrightarrow{b}$|=2$\sqrt{7}$,则向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设a>b>c,且a+b+c=0,求证:$\sqrt{{b}^{2}-ac}$<$\sqrt{3}$a.

查看答案和解析>>

同步练习册答案